Skip to main content
Log in

Histopathological Effects of Bisphenol A on Soft Tissues of Corbicula fluminea Mull

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Bisphenol A (BPA), a commonly occurring industrial chemical that is present in polycarbonate plastics and epoxy resins is mechanistically shown to affect various bodily functions of organisms. However, very limited studies have been done on the histological effects of BPA on bivalves. In this study, the toxicity of BPA was analyzed through its histological effects on the gills, digestive glands and adductor muscles of Corbicula fluminea, a freshwater bivalve.

Methods

Forty C. fluminea were exposed to set-ups with 1 µg/L, 2 µg/L and 3 µg/L of BPA for twenty-one days. Afterwhich, histolopathological analysis were done in the adductor muscles, digestive glands and gills of the clam. Histological alterations such as vacuolations, necrosis, lamellar deformation, hyperplasia, loss of epithelium, necrosis, tubular alteration, neoplasia, hemocyte infiltration, hypertrophy and pyknosis were observed and percent histological aberrations were determined per organ.

Results

Results showed that there was a significant difference in the histological alterations observed between the tissues of exposed and unexposed clams. Moreover, varying concentrations of BPA rendered differential degree of histological damage on the soft tissues of the clam. The digestive gland was the most affected tissues followed by the gill then the adductor muscles.

Conclusion

BPA were found to be toxic to C. fluminea as evidenced by histology. Moreover, the differential histological responses of the tissues of C. fluminea in different concentrations of BPA proves that they are good indicators of environmental stressors such as BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flint, S., Markle, T., Thompsin, S. & Wallace, E. Bisphenol A exposure, effects and policy: A wildlife perspective — a Review. J. of Environ. Mngt. 104, 19–34 (2012).

    Article  CAS  Google Scholar 

  2. Stahlhut, R. W., Welshons, W. V. & Swan, S. H. Bisphenol-A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ. Health Perspect. 117, 784–789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oehlmann, J., Schulte-Oehlmann, U., Tillmann, M. & Markert, B. Effects of endocrine disruptors on proso-branch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicol. 9, 383–397 (2000).

    Article  CAS  Google Scholar 

  4. Crain, D. A. et al. An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod. Toxicol. 24, 225–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Oehlmann, J. et al. A critical analysis of the biological impacts of plasticizers on wildlife. Phil. Trans. R. Soc. B 364, 2047–2062 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ike, M., Jin, C. S. & Fujita, M. Biodegradation of bisphenol A in aquatic environment. Water Sci. Technol. 42, 31–38 (2000).

    Article  CAS  Google Scholar 

  7. Kang, J. H., Aasi, D. & Katayama, Y. Bisphenol a in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol. 37, 607–625 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann, D. W., Levine, J. F. & Law, J. M. Polychlorinated biphenyl exposure causes gonadal atrophy and oxidative stress in Corbicula fluminea clams. Toxic. Path. 35, 356–365 (2007).

    Article  CAS  Google Scholar 

  9. Oliveira, L. F., Silva, S. M. C. P. & Martinez, C. Assessment of domestic landfill leachate toxicity to the Asian clam Corbicula fluminea via biomarkers. Ecotoxicol. Environ. Saf. 103, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Santos, K. C. & Martinez, C. B. R. Genotoxic and biochemical effects of atrazine and Roundups, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicol. Environ. Saf. 100, 7–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Mantecca, P., Vailati, G. & Bacchetta, R. Histological changes and Micronucleus induction in the Zebra mussel Dreissena polymorpha afterparaquat exposure. Histol. Histopathol. 21, 829–840 (2006).

    CAS  PubMed  Google Scholar 

  12. Beltran, K. S. & Pocsidio, G. N. Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines. Environ. Monit. Assess. 165, 331–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Britton, J. C. & Morton, B. in A dissection guide, field and laboratory manual for the introduced bivalve Corbicula fluminea. Malacologia Rev. (Niwot, Colorado, U.S.A. 1982).

    Google Scholar 

  14. McMahon, R. F. in Ecology and classification of North American freshwater invertebrates (eds Thorp, J. H., Covich, A. P.) 331–430 2nd Edn. (Academic Press, San Diego, 2001).

  15. Ruppert, E. E., Fox, R. S. & Barnes R. B. in Invertebrate Zoology, A functional evolutionary Approach 7th Edn. (Brooks Cole Thomson, Belmont California, 2004).

    Google Scholar 

  16. Graney, R. L., Cherry, D. S. & Cairns, J. Heavy metal indicator potential of the Asiatic clam Corbicula fluminea in aquatic ecosystems: An overview. Hydrobiologia 102, 81–88 (1983).

    Article  CAS  Google Scholar 

  17. Doherty, F. G. The Asiatic clam, Corbicula spp as a biological monitor in freshwater environments. Environ. Monit. Assess. 15, 143–181 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Colombo, J. C., Bilos, C., Campanaho, M., Presa, M. J. R. & Catoggio, J. A. Bioaccumulation of polychlorinated-biphenys and chlorinated pesticides by the Asiatic Clam Corbicula fluminea—its use as sentinelorganism in the Rio-De-La-Plata Estuary, Argentina. Environ. Sci. Technol. 29, 914–927 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Labrot, F., Narbonne, J. F., Ville, P., Saint Denis, M. & Ribera, D. Acute toxicity, toxicokinetics, and tissue target of lead and uranium in the clam Corbicula fluminea and the worm Eisenia fetida: comparison with the fish Bradydanio rerio. Arch. Environ. Contam. Toxicol. 36, 167–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Fournier, E., Adam, C., Massabuau, J. C. & Garnier-La-place, J. Bioaccumulation of waterborne selenium in the Asiatic clam Corbicula fluminea: influence of feeding induced ventilatory activity and seleniumspecies. Aquat. Toxicol. 72, 251–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Way, C. M., Hornback, D. J., Miller-War, C. A., Payne, B. S. & Miller, A. C. Dynamics of filter feeding in Corbicula flumnea (Bivalvia: Corbiculidae). Can. J. Zool. 68, 115–120 (1990).

    Article  Google Scholar 

  22. Bassack, S. B., Oneto, M. L., Verrengia-Guerrero, N. R. & Kesten, E. M. Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea. Bull. Environ. Contam. Toxicol. 58, 497–503 (1997).

    Article  Google Scholar 

  23. Baudrimont, M., Lemaire-Gony, S, Ribeyre, F., Metivaud, J. & Boudou, A. Seasonal variations of metallothionine concentrations in the Asiatic clam (Corbicula fluminea). Comp. Biochem. Physiol. C 118, 361–367 (1997).

    Google Scholar 

  24. Inza, B., Ribeyre, F., Maury-Brachet, R. & Boudou, A. Tissue distribution of inorganic mercury, methyl-mercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water columnand sediment. Chemosphere 35, 2817–2836 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Narbonne, J. F., Djomo, J. E., Ribera, D., Ferrier, V. & Garrigues, P. Accumulation kinetics of polycyclic aromatic hydrocarbon adsorbed to sediment by the mollusk Corbicula fluminea. Ecotoxicol. Environ. Saf. 42, 1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Tran, D., Boudou, A. & Massabuau, J. C. How water oxygenation levels influences cadmium accumulation pattern in Asiatic clam Corbicula fluminea: a laboratory and field study. Environ. Toxicol. Chem. 20, 2073–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Cataldo, D. H., Boltovskoy, D., Stripeikis, J. & Pose, M. Condition index and growth rates of field caged Corbicula fluminea (Bivalvia) as biomarkers of pollution gradients in the Paraná River delta (Argentina). Aquat. Ecosyst. Health Manage. 4, 187–201 (2001).

    Article  Google Scholar 

  28. Achard, M., Baudrimont, M., Boudou, A. & Bourdineaud, J. P. Induction of multixenobiotic resistance protein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure. Aquat. Toxicol. 67, 347–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sousa, R., Antunes, C. & Guilhermino, L. Ecology of the invasive Asian clam Corbicula fluminea in aquatic ecosystems: An overview. Int. J. Limnol. 44, 85–94 (2008).

    Article  Google Scholar 

  30. Hatel, A. et al. Adverse effects of Bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations. Ecotoxicol. Environ. Saf. 76, 56–99 (2012).

    Article  CAS  Google Scholar 

  31. Yang, Y., Kim, S., Hong, Y., Ahn, J. & Park, M. Environmentally relevant levels of Bisphenol A may accelerate the development of type II diabetes mellitus in adolescent Otsuka Long Evans Tokushima fatty rats. Toxicol Environ. Health. Sci. 6, 41–47 (2014).

    Article  Google Scholar 

  32. Arriola, F. J. & Villaluz, D. K. Snail fishing and duck raising in Laguna de Bay, Luzon. Phil. J. Scie. 69, 173–187 (1939).

    Google Scholar 

  33. Iritani, N., Fukuda, E. & Inoguchi, K. Effect of feeding shellfish Corbicula fluminea on lipid metabolism in rat. Artherosclerosis 34, 41–48 (1979).

    Article  CAS  Google Scholar 

  34. Halarnkar, P. P., Chambers, J. D., Wakayama, E. J. & Bloomquist, G. J. Vitamin B12 levels and proprionate metabolism in selected non-insect arthropods and other invertebrates. Comp. Biochem. Physiol. B 88, 869–873 (1987).

    Article  Google Scholar 

  35. Hayashi, O., Kameshiro, M., Masuda, M. & Satoh, K. Bioaccumulation and metabolism of [14C] bisphenol a in the brackish water bivalve Corbicula japonica. Biosci. Biotechnol. Biochem. 72, 3219–3224 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Kanapala, V. & Arasada, S. P. Histopathological effect of paraquat (gramoxene) on the digestive gland of fresh-water snail Lymnaea luteola (Lamarck: 1799) (mollusca: gastropoda). Int. J. Scien. Res. Environ. Sci. 1, 224–230 (2013).

    Google Scholar 

  37. Costa, P. M., Carreira, S., Costa, M. H. & Caeiro, S. Development of histopathological indices in a commercial marine bivalve (Ruditapes decussatus) to determine environmental quality. Aquat. Toxicol. 126, 442–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Ziegler, U. & Groscurth, P. Morphological features of cell death. Physiology 19, 124–128 (2004).

    Article  CAS  Google Scholar 

  39. Goss, R. J. Hypertrophy versus hyperplasia. Science 153, 1615–1620 (1966).

    Article  CAS  PubMed  Google Scholar 

  40. Zong, W. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Leonard, J. A., Cope, W. G., Barnhart, M. C. & Bringolf, R. B. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquat. Toxicol. 150, 103–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Payan, P. G., Stecco, A., Stern, R. & Stecco, C. Painful connections: Densification versus fibrosis of fascia. Curr. Pain Headache Rep. 18, 441 (2014).

    Article  Google Scholar 

  43. Kumar, S., Pandey, R. K. & Das, V. K. Dimethoate alters respiratory rate and gill histopathology in freshwater mussel Lamellidens marginalis (Lamarck). J. Appl. Biosci. 38, 154–158 (2012).

    CAS  Google Scholar 

  44. Abdel-Nabi, I. M., El-Shenawy, N. S., Taha, I. A. & Moawad, T. I. Oxidative stress biomarkers and bioconcentration of Reldan and Roundup by the edible clam, Ruditapes decussates. Curr. Zool. 53, 910–920 (2007).

    CAS  Google Scholar 

  45. El-Shenawy, N. S. et al. Histopathologic biomarker response of clam, Ruditapes decussates, to organophosphorous pesticides Reldan and Roundup: A Laboratory Study. Ocean Sci. J. 44, 27–34 (2009).

    Article  CAS  Google Scholar 

  46. Schmitt, P. et al. The antimicrobial defense of the pacific oyster, Crassostrea gigas. How diversity may compensate for scarcity in the regulation of resident/pathogenic microflora. Front. Microbiol. 3, 160 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fuller, J. K. in Surgical technology: principles and practice 6th Edn. (Elsevier Saunders, Missouri, 2013).

    Google Scholar 

  48. Ford, S., Kanaley, S. & Littlewood, D. Cellular responses of oysters infected with Haplosporidium nelsoni: changes in circulating and tissue-infiltrating hemocytes. J. Invertebr. Pathol. 61, 49–57 (2002).

    Article  Google Scholar 

  49. Suthar, H., Verma, R. J., Patel, S. & Jasrai, Y. T. Green tea potentially ameliorates bisphenol a-induced oxidative stress: An in vitro and in silico study. Biochem. Res. Int. 14, 1–9 (2014).

    Article  CAS  Google Scholar 

  50. Chen, W. Y. & Liao, C. M. Toxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species. Environ. Sci. Pollut. Res. 19, 3868–3878 (2012).

    Article  CAS  Google Scholar 

  51. Auffret, M. Histopathological changes related to chemical contamination in Mytilus edulis from field and experimental conditions. Mar. Eco. Prog. Ser. 46, 101–107 (1999).

    Article  Google Scholar 

  52. Rodriguez-Ariza, A. et al. Uptake and clearance of PCB congeners in Chamaelea gallina: response of oxidative stress biomarkers. Compar. Biochem. Physiol. C 134, 57–67 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Biology, University of the Philippines Manila for providing required laboratory facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly B. Benjamin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamin, K.B., Co, E.L., Competente, J.L. et al. Histopathological Effects of Bisphenol A on Soft Tissues of Corbicula fluminea Mull. Toxicol. Environ. Health Sci. 11, 36–44 (2019). https://doi.org/10.1007/s13530-019-0386-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-019-0386-4

Keywords

Navigation