Toxicology and Environmental Health Sciences

, Volume 10, Issue 5, pp 253–260 | Cite as

Thorium Harmful Impacts on the Physiological Parameters of the Adult Male Albino Rats and Their Mitigation Using the Alginate

  • Mohamed M. RezkEmail author
  • Asmaa A. Mohamed
  • Amal A. Ammar
Original article



Thorium-232 is a natural radionuclide from the actinide family, is abundantly present in monazite and other ores after thorium occupational or accidental exposures it deposited in many organs. The object of the study is to investigate thorium shortterm hazards effects on the male albino rate and study the alginate mitigation effect on thorium hazards.


Rats were grouped into control, Thorium (Th) and Th+Alginate(Alg) groups. The 54 rats of the different groups were decapitated (6 rats for each decapitation) after the 1st, 3rd, and 7th day during the treatment. Parameters of hematological (Hb, RBCs, indices, granular, lymphocytes), liver (GOT, GPT, Alb.), lipid (chol., trig.) kidney (creat., urea, uric acid) were determined after the determination of thorium distribution and accumulation in different organs.


The results showed that the IP administration of 13.6 mg/kg b.wt. thorium nitrate (Th) for seven days produced an organs distribution of Th and accumulated in liver>brain>lipid>Kidney>heart>testes at the end of the experiment, also it induced a hematological, hepatic and lipid dysfunction with no effect on renal function. On the other hand, the oral administration of 5% alginate in the drinking water in parallel with Th injection could slightly reduce Th hazardous effects which may be due to alginate ability to inhibit many inflammatory factors that reduce the hemolysis in erythrocyte, reduce hepatocellular apoptosis, enhance the cholesterol excretion into the feces and also due to the antioxidant and chelating capacity of alginate to Th ions.


So, alginate administration could ameliorate Th short-term hazards effects.


Thorium Alginate Hematological Hepatic Cholesterol Renal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Veado, M. A. R. V. et al. Metal pollution in the environment of Minas Gerais State–Brazil. Environ. Monit. Assess. 117, 157–172 (2006).CrossRefGoogle Scholar
  2. 2.
    Peng, C. et al. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa. Int. J. Mol. Sci. 18, doi: 10.3390/ijms18040795 (2017).Google Scholar
  3. 3.
    Sheppard, S. C., Sheppard, M. I., Gallerand, M. O. & Sanipellia, B. Derivation of ecotoxicity thresholds for uranium. J. Environ. Radioact. 79, 55–83 (2005).CrossRefGoogle Scholar
  4. 4.
    Rezk, M. M. A neuro–comparative study between single/ successive thorium dose intoxication and alginate treatment. Biol. Trace. Elem. Res. 185, 414–423 (2018).CrossRefGoogle Scholar
  5. 5.
    Correa, L. M., Kochhann, D., Becker, A. G., Pavanato, M. A. & Llesuy, S. F. Biochemistry, cytogenetics and bioaccumulation in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Aquat. Toxicol. 88, 250–256 (2008).CrossRefGoogle Scholar
  6. 6.
    Kochhann, D., Pavanato, M., Llesuy, S., Correa, L. & Riffel, L. R. Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Chemospher. 77, 384–391 (2009).CrossRefGoogle Scholar
  7. 7.
    Mernagh, T. P. & Miezitis, Y. A. in Review of the Geochemical Processes Controlling the Distribution of Thorium in the Earth’s Crust and Australia’s Thorium Resources (Geoscience Australia, Australia, 2007).Google Scholar
  8. 8.
    Davis, T. A., Volesky, B. & Mucci, A. A review of the biochemistry heavy metal biosorption by brown algae. Water Res. 37, 4311–4330 (2003).CrossRefGoogle Scholar
  9. 9.
    Sosnik, A. Alginate particles as a platform for drug delivery by the oral route: state–of–the–Art. ISRN Pharm. 2014, (2014).Google Scholar
  10. 10.
    Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).CrossRefGoogle Scholar
  11. 11.
    Uno, T., Hattori, M. & Yoshida, T. Oral administration of alginic acid oligosaccharide suppresses IgE production and inhibits the induction of oral tolerance. Biosci. Biotechnol. Biochem.. 70, 3054–3057 (2006).CrossRefGoogle Scholar
  12. 12.
    Kumar, A., Ali, M. & Pandey, B. Understanding the Biological Effects of Thorium and Developing Efficient Strategies for Its Decorporation and Mitigation. Bark Newsletter. 335, 55–56 (2013).Google Scholar
  13. 13.
    Kumar, A., Sharma, P., Ali, M., Pandey, B. & Mishra, B. Decorporation and therapeutic efficacy of liposomal–DTPA against thorium–induced toxicity in the Wistar rat. Inte. J. Radiat. Biol. 88, 223–229 (2012).CrossRefGoogle Scholar
  14. 14.
    Kumar, A., Ali, M., Pandey, B., Hassan, P. & Mishra, M. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Biochimie. 92, 869–879 (2010).CrossRefGoogle Scholar
  15. 15.
    Guyton, A. & Hall, J. E. in Text book of medical physiology (Elsevier Inc., Pennsylvania, 2006)Google Scholar
  16. 16.
    Du, A. L., Sabatié–Gogova, A, Morgenstern, A. & Montavon, G. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable for targeted alpha therapy? J. Inorg. Biochem. 109, 882–890 (2012).Google Scholar
  17. 17.
    ATSDR (Agency for Toxic Substances and Disease Registry), ADDENDUM FOR THORIUM Supplement to the 1990 Toxicological Profile for Thorium http:// (2014).Google Scholar
  18. 18.
    Larsson, A., Lehtinen, K.–J. & Haux, C. Biochemical and hematological effects of titanium dioxides industrial effluent on fish. Bull. Environ. Contam. Toxicol. 25, 427–435 (1980).CrossRefGoogle Scholar
  19. 19.
    Abd–Allah, G. A., Ibrahim, M. S., Bahnsawy, M. H. & Abdel–Baky, T. E. Toxic effects of some water pollutants (gallant and mercury) on blood parameters of catfish Clarias Lazera. J. Egypt. Ger. Soc. Zool. 6A, 201–209 (1991).Google Scholar
  20. 20.
    Brink, C., Dahlen, S. E., Drazen, J., Evanse J. F. & Haw D. W. International Union of Pharmacology: XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol. Rev. 55, 195–227 (2003).CrossRefGoogle Scholar
  21. 21.
    Oliveira, M. S., Duarte, I. M., Paiva, A. V., Matos, R. S. & Almidia C. E. The role of chemical interactions between thorium, cerium, and lanthanum in lymphocyte toxicity. Arch. Environ. Occup. Healt. 69, 40–5 (2014).CrossRefGoogle Scholar
  22. 22.
    Kyoizumi, S., Umeki, S., Akiyama, M., Hirai, Y. & Mori, T. Frequency of mutant T lymphocytes defective in the expression of the T–cell antigen receptor gene among radiation–exposed people. Mutat. Res. 265, 173–180 (1992).CrossRefGoogle Scholar
  23. 23.
    Zhao, K., Chen, T., Lin, B., Cui, W. & Kan, B. Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness. React. Funct. Polym. 87, 7–14 (2015).CrossRefGoogle Scholar
  24. 24.
    Raguvarana, R., Manujaa, A., Manujaa, B. K., Riyesha, T. & Singha, S. Sodium alginate and gum acacia hydrogels of zinc oxide nanoparticles reduce hemolytic and oxidative stress inflicted by zinc oxide nanoparticles on mammalian cells. Int. J. Biol. Macromo. 101, 967–972 (2017).CrossRefGoogle Scholar
  25. 25.
    Singh, S., Chopra, M., Dilbaghi, N., Manuja, B. K. & Kumar, S. Synthesis and evaluation of isometamidium–alginate nanoparticles on equine mononuclear and red blood cells. Int. J. Biol. Macromo. 92, 788–794 (2016).CrossRefGoogle Scholar
  26. 26.
    Kaul, A. & Muth, H. Thorotrast kinetics and radiation dose. Results from studies in Thorotrast patients and from animal experiments. Radiat. Environ. Biophys. 15, 241–259 (1978).CrossRefGoogle Scholar
  27. 27.
    Parr, R. M., Lucas, H. F. Jr. & Griem, M. L. Metabolism of 232Th decay series radionuclides in man and other animals following intravascular administration of Thorotrast. ANL–7615. ANL Rep. 1, 97–115 (1968).Google Scholar
  28. 28.
    Howell, R. W. Patient exposures and consequent risks from nuclear medicine procedures. Health Phys. 100, 313–317 (2011).CrossRefGoogle Scholar
  29. 29.
    Farid, I. & Conibear, S. A. Hepatic function in previously exposed thorium refinery workers as compared to normal controls from the health and nutrition survey. Health Phys. 44, 221–230 (1983).CrossRefGoogle Scholar
  30. 30.
    Evans, C. H. in Biochemistry of the lanthanides (Plenum Press, New York and London, 1990).CrossRefGoogle Scholar
  31. 31.
    Xu, S. et al. Pretreatment with Propylene Glycol Alginate Sodium Sulfate Ameliorated Concanavalin A–induced Liver Injury by Regulating the PI3K/Akt Pathway in Mice. Life Sci. 185, 103–113 (2017).CrossRefGoogle Scholar
  32. 32.
    Shteyer, E. et al. Reduced liver cell death using a bandage of alginate scaffold: A novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater. 10, 3209–3216 (2014).CrossRefGoogle Scholar
  33. 33.
    Nakazono, S. et al. Anti–obesity effects of enzymatically–digested alginate oligomer in mice model fed a high–fat–diet. Bioact. Carbohydr. Dietary Fibr. 7, 1–8 (2016).CrossRefGoogle Scholar
  34. 34.
    Sasmaz, A., Ozkan, S., Ferit, M. & Sasmaz, M. The hematological and biochemical changes in rats exposed to britholite mineral. Appl. Radiat. Isot. 131, 185–188 (2017).CrossRefGoogle Scholar
  35. 35.
    Lucas, N., Legrand, R., Breton, J., DE’ Chelotte, P. & Edwards–le, F. Chronic delivery of a–melanocyte–stimulating hormone in rat hypothalamus using albumin–alginate microparticles: effects on food intake and body weight. J. Neurosci. 290, 445–453 (2015).CrossRefGoogle Scholar
  36. 36.
    Kimura, Y., Watanabe, Y. & Okuda, H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J. Ethnopharmacol. 54, 47–54 (1996).CrossRefGoogle Scholar
  37. 37.
    Peerce, B. E. & Wright, E. M. Sodium–induced conformational changes in the glucose transporter of intestinal brush borders. J. Biol. Chem. 259, 14105–14112 (1984).Google Scholar
  38. 38.
    Downs, W. L., Scott, K. J., Maynard, E. A. & Hodge, H. C. in Studies on the toxicity of thorium nitrate (University of Rochester, New York, 1959).Google Scholar
  39. 39.
    Del Rio, D. et al. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 18, 1818–1892 (2013).CrossRefGoogle Scholar
  40. 40.
    Kuzkaya, N., Weissmann, N., Harrison, D. G. & Dikalov, S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: Implications for uncoupling endothelial nitric oxide synthase. Biochem. Pharmacol. 70, 343–354 (2005).CrossRefGoogle Scholar
  41. 41.
    Mclinton, L. T. & Schubert, J. The toxicity of some zirconium and thorium salt in rate. J. Pharmacol. Exp. Ther. 94, 1–6 (1948).Google Scholar
  42. 42.
    Food Administration Organizationn. Committee for Inland Fisheries of Africa. Report of the third session of the working party on pollution and Fisheries, http:// (1992).Google Scholar
  43. 43.
    Marczenko, Z. in Spectrophotometric determination of elements (Ellis Harwood Ltd, England, 1986).Google Scholar
  44. 44.
    Britton, C. J. in Disorders of blood. 9th edn (J and A. Churchill, Ltd., London, 1963).Google Scholar
  45. 45.
    Penington, D. G., Rush, B. & Castaldi, P. A. in Clinical hematology in medical practice 4th edn (The English language book society and Black well scientific publication, London, 1999).Google Scholar
  46. 46.
    Foster, S. A., Swartzentruber, M. & Roberts, P. Reference interval studies of the Rate–Blanked creatinine/ Jaffe Method on BM/Hitachi system in six U. S. Laboratories. Clin. Chem. Abstract No. 361(1994).Google Scholar
  47. 47.
    Glicker, M. R., Ryder, K. W. & Jackson, S. A. Graphical Comparisons of interferences in Clinical Chemistry Instrumentation. Clin. Chem. 32, 470–474 (1986).Google Scholar
  48. 48.
    Bergmeyer, H. U., Horder, M. & Rej, R. Approved recommendation on IFCC method for the measurement of catalytic concentration of enzymes. Part 2. IFCC Method for aspartate amino transferase. J. Clin Chem. Clin. Biochem. 24, 497–508 (1986).Google Scholar
  49. 49.
    Grant, G. H., Silverman, L. M. & Christenson, R. H. in Fundamentals of Clinical Chemistry 3rd edn. (eds Tietz N. W.) 328–330 (Philadelphia, Pa: WB Saunders, 1987).Google Scholar
  50. 50.
    Shephard, M. D. S. & Whiting, M. J. Falsely low estimation of triglycerides in lipemic plasma by the enzymatic triglyceride method with modified Trinder’s Chromogen. Clin. Chem. 36, 325–329 (1990).Google Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Nature B.V. 2018

Authors and Affiliations

  • Mohamed M. Rezk
    • 1
    Email author
  • Asmaa A. Mohamed
    • 2
  • Amal A. Ammar
    • 2
  1. 1.Isotopes department, Nuclear materials authorityCairoEgypt
  2. 2.Medical & Radiation Research Department Nuclear Materials AuthorityCairoEgypt

Personalised recommendations