Advertisement

Toxicology and Environmental Health Sciences

, Volume 10, Issue 5, pp 237–244 | Cite as

B-esterases and Behavioral Biomarkers in Tadpoles Exposed to Pesticide Pyrethroid-TRISADA®

  • Rafael C. LajmanovichEmail author
  • Paola M. Peltzer
  • Candela S. Martinuzzi
  • Andrés M. Attademo
  • Agustín Bassó
  • Mariana I. Maglianese
  • Carlina L. Colussi
Original article

Abstract

Objective

The ecotoxic effects of pesticide used for mosquito’s control TRISADA® (TRI) [deltamethrin (D) 1%+tetramethrin (T) 0.33%, and piperonyl butoxide (PB) 0.29%] on amphibian larvae were investigated.

Methods

In the laboratory, Rhinella arenarum tadpoles were exposed to nominal concentrations of 0.0000 (control; CO), 0.0003125% (C1); 0.000625% (C2); 0.00125% (C3); 0.0025% (C4); 0.005% (C5) (v/v) of formulated TRI. Median lethal concentration (LC50) (%) and 95% confidence limits (CL), the no-observedeffect concentration (NOEC), and the lowest-observedeffect concentration (LOEC) were quantified. The possible effects of TRI on B-esterases, evaluated through acetylcholinesterase (AChE) and carboxylesterase (CbE) activities, in addition to swimming performance (distance moved, mean speed, maximum speed, global activity, and resting time or immobility) were measured in tadpoles whose concentrations displayed survival rates higher than 50%.

Results

The 48 h LC50 of TRI was 0.00125% (v/v) [12.5 (D)+4.1 (T)+3.6 (PB); μg L-1] (CL: 0.000811- 0.001926%). The 48 h NOEC and LOEC values were 0.0003125% (v/v) [3.1 (D)+1 (T)+0.9 (PB); μg L-1] and 0.000625% (v/v) [6.2 (D) +2 (T) +1.8 (PB); μg L-1], respectively. At 48 h of exposure to upper sublethal TRI concentration assay (C3), AChE and CbE activities were significantly inhibited (68 and 84%, respectively) with respect to controls. Also, all the sublethal TRI concentrations caused significantly alterations of all swimming endpoints evaluated.

Conclusion

The current study established that pesticide TRI is toxic to R. arenarum tadpoles and had detrimental effects on the B-sterases activities and swimming activity at TRI sublethal concentrations.

Keywords

Amphibian Rhinella arenarum Pyrethroids mixture B-esterases activity Behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: a developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933 (2010).CrossRefGoogle Scholar
  2. 2.
    Sparling, D. W., Linder, G., Bishop, C. A. & Krest, S. K. in Ecotoxicology of Amphibians and Reptiles, 2nd edn (eds Sparling, D. W., Linder, G., Bishop, C. A. & Krest, S. K.) 1–11 (CRC Press, Taylor & Francis Group, New York, 2010).Google Scholar
  3. 3.
    Hemingway, J. The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369, doi: 10.1098/ rstb.2013.0431 (2014).Google Scholar
  4. 4.
    WHO. Fifteenth report of the WHO Expert Committee on Vector Biology and Control, http://apps.who.int/ iris/bitstream/handle/10665/37432/WHO_TRS_818. pdf?sequence=1&isAllowed=y (1992).Google Scholar
  5. 5.
    Rehman, H. et al. Systematic review on pyrethroid toxicity with special reference to deltamethrin. J. Entomol. Zool. Stud. 2, 60–70 (2014).Google Scholar
  6. 6.
    Cakir, G., Yavuz, O. & Kocak, O. Effects of piperonyl butoxide and tetramethrin combinations on biological activities of selected synthetic pyrethroid insecticides against different Housefly (Musca domestica L., Diptera: Muscidae) populations. Acta. Vet. Brno. 77, 467–474 (2008).CrossRefGoogle Scholar
  7. 7.
    Merivee, E. et al. Low doses of the common alpha–cypermethrin insecticide affect behavioural thermoregulation of the non–targeted, beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae). Ecotoxicol. Environ. Saf. 120, 286–294 (2015).CrossRefGoogle Scholar
  8. 8.
    Berrill, M. et al. Lethal and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environ. Toxicol. Chem. 12, 525–539 (1993).CrossRefGoogle Scholar
  9. 9.
    Sánchez–Hernández, J. C. in Environmental pollution: new research (eds Plattenberg, R. H.) 1–45 (Nova, New York, 2006).Google Scholar
  10. 10.
    Freitas, J. S., Felício, A. A., Teresa, F. B. & Alves de Almeida, E. Combined effects of temperature and clomazone (Gamit®) on oxidative stress responses and B–esterase activity of Physalaemus nattereri (Leiuperidae) and Rhinella schneideri (Bufonidae) tadpoles. Chemospher. 185, 548–562 (2017).CrossRefGoogle Scholar
  11. 11.
    Wheelock, C. E. et al. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev. Environ. Contam. Toxicol. 195, 117–178 (2008).Google Scholar
  12. 12.
    Peltzer, P. et al. Effect of exposure to contaminated pond sediments on survival, development, and enzyme and blood biomarkers in veined treefrog (Trachycephalus typhonius) tadpoles. Ecotoxicol. Environ. Saf. 98, 142–151 (2013).CrossRefGoogle Scholar
  13. 13.
    Attademo, A. M., Lajmanovich, R. C., Peltzer, P. M. & Junges, C. Acute toxicity of metaldehyde in the invasive rice snail Pomacea canaliculata and sublethal effects on tadpoles of a non–target species (Rhinella arenarum). Water Air Soil Pollut. 227, 1–12 (2016).CrossRefGoogle Scholar
  14. 14.
    Robles–Mendoza, C. et al. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity. Aquat. Toxicol. 105, 728–734 (2011).CrossRefGoogle Scholar
  15. 15.
    Denoël, M. et al. Effects of a sublethal pesticide exposure on locomotor behavior: a video–tracking analysis in larval amphibians. Chemospher. 90, 945–951 (2013).CrossRefGoogle Scholar
  16. 16.
    Egea–Serrano, A. & Tejedo, M. Contrasting effects of nitrogenous pollution on fitness and swimming performance of Iberian water frog, Pelophylax perezi (Seoane, 1885), larvae in mesocosms and field enclosures. Aquat. Toxicol. 146, 144–153 (2014).CrossRefGoogle Scholar
  17. 17.
    Junges, C. M. et al. Acute toxicity and etho–toxicity of three insecticides used for mosquitoes control on amphibian tadpoles. Water. Air. Soil. Pollut. 228, 143–153 (2017).CrossRefGoogle Scholar
  18. 18.
    Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).CrossRefGoogle Scholar
  19. 19.
    Wu, X. M. et al. Identification of carboxylesterase genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). Pest. Manag. Sci. 74, 159–169 (2018).CrossRefGoogle Scholar
  20. 20.
    Salibián, A. Effects of deltametrhin on the south american toad (Bufo arenarum). Bull. Environ. Contam. Toxicol. 48, 616–621 (1992).CrossRefGoogle Scholar
  21. 21.
    de Knecht, J. A. & van Herwijnen, R. Environmental risk limits for deltamethrin. https://www.researchgate. net/publication/237125551_Environmental_risk_limits_ for_deltamethrin.pdf (2008).Google Scholar
  22. 22.
    Aydin–Sinan, H., Güngördü, A. & Ozmen, M. Toxic effects of deltamethrin and ë–cyhalothrin on Xenopus laevis tadpoles. J. Environ. Sci. Health B. 47, 397–402 (2012).CrossRefGoogle Scholar
  23. 23.
    Macagnan, N. et al. Toxicity of cypermethrin and deltamethrin insecticides on embryos and larvae of Physalaemus gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. Int. 24, 20699–20704 (2017).CrossRefGoogle Scholar
  24. 24.
    Zhang, Z. Y. et al. Acute toxicity to zebrafish of two organophosphates and four pyrethroids and their binary mixtures. Pest. Manag. Sci. 66, 84–89 (2010).CrossRefGoogle Scholar
  25. 25.
    Conney, A. H. et al. Effects of piperonyl butoxide on drug metabolism in rodents and man. Arch. Environ. Occup. Healt. 24, 97–106 (1972).CrossRefGoogle Scholar
  26. 26.
    Wickham, J. in Piperonyl Butoxide: the insecticide synergist (eds Jones, D. G.) 239–260 (Academic Press, London, 1998).Google Scholar
  27. 27.
    Sánchez–Bayo, F. Insecticides Mode of Action in Relation to Their Toxicity to Non–Target Organisms. J. Environment. Analytic. Toxicol. S4, doi:10.4172/2161–0525. S4–002 (2012).Google Scholar
  28. 28.
    Schleier, J. J. & Peterson R. K. D. The Joint Toxicity of Type I, II,and Nonester Pyrethroid Insecticides. J. Econ. Entomol. 105, 85–91 (2012).CrossRefGoogle Scholar
  29. 29.
    Spitzer, N. C. & Borodinsky, L. N. Implications of activity–dependent neurotransmitter—receptor matching. Philos. Trans. R. Soc. Lond., B., Biol. Sci. 363, doi: 10. 1098/rstb.2007.2257 (2008).Google Scholar
  30. 30.
    Das, B. K. & Mukherjee, S. C. Chronic toxic effects of quinalphos on some biochemical parameters in Labeo rohita (Ham.). Toxicol. Lett. 114, 11–18 (2000).CrossRefGoogle Scholar
  31. 31.
    Velisek, J. et al. Effects of deltamethrin on rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Pharmacol. 23, 297–301 (2007).CrossRefGoogle Scholar
  32. 32.
    Tu, H. T. et al. Combined effects of deltamethrin, tem perature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemospher. 86, 83–91 (2012).CrossRefGoogle Scholar
  33. 33.
    Üner, N., Piner, P. & Temiz, Ö. Piperonyl butoxide increases oxidative toxicity of fenthion in the brain of Oreochromis niloticus. J. Biochem. Mol. Toxicol. 28, 84–90 (2014).CrossRefGoogle Scholar
  34. 34.
    Maxwell, D. M. The specificity of carboxylesterase protection against the toxicity of organophosphate compounds. Toxicol. Appl. Pharmacol. 114, 306–312 (1992).CrossRefGoogle Scholar
  35. 35.
    Denton, D. L. Joint acute toxicity of esfenvalerate and diazinon to fathead minnow (Pimephales promelas) larvae. Environ. Toxicol. Chem. 22, 336–341 (2003).CrossRefGoogle Scholar
  36. 36.
    David, M., Marigoudar, S. R., Patil, V. K. & Halappa, R. Behavioral, morphological deformities and biomarkers of oxidative damage as indicators of sublethal cypermethrin intoxication on the tadpoles of D. melanostictus (Schneider, 1799). Pest. Biochem. Physiol. 103, 127–134 (2012).CrossRefGoogle Scholar
  37. 37.
    Materna, E. J., Rabeni, C. F. & Lapoint, T. W. Effects of the synthetic pyrethroid insecticide, esfenvalerate, on larval leopard frogs (Rana spp.). Environ. Toxicol. Chem. 14, 613–622 (1995).Google Scholar
  38. 38.
    Agostini, M. G., Natale, G. S. & Ronco, A. E. Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicolog. 19, 1545–1550 (2010).CrossRefGoogle Scholar
  39. 39.
    Casco, V. et al. Apoptotic cell death in the central nervous system of Bufo arenarum tadpoles induced by cypermethrin. Cell Biol. Toxicol. 22, 199–211 (2006).CrossRefGoogle Scholar
  40. 40.
    Mushigeri, S. & David, M. Fenvalerate induced changes in the Ach and associated AchE activity in different tissues of fish Cirrhinus mrigala (Hamilton) under lethal and sub–lethal exposure period. Environ. Toxicol. Pharmacol. 20, 65–72 (2005).CrossRefGoogle Scholar
  41. 41.
    Marigoudar, S. R., Nazeer Ahmed, R. & David, M. Impact of cypermethrin on Behavioural responses in the fresh water teleost, Labeo rohita (Hamilton). World. J. Zool. 4, 19–23 (2009).Google Scholar
  42. 42.
    Gan, J. et al. Distribution and persistence of pyrethroids in runoff sediments. J. Environ. Qual. 34, 836–841 (2005).CrossRefGoogle Scholar
  43. 43.
    Gosner, K. L. A simplified table for staging anuran embryos and larvae, with notes on identification. Herpetologic. 16, 183–190 (1960).Google Scholar
  44. 44.
    ASIH: American Society of Ichthyologists and Herpetologists. Guidelines for use of live amphibians and reptiles in field and laboratory research, 2nd edn (Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists, USA, 2004).Google Scholar
  45. 45.
    Schleier, J. J. & Peterson, R. K. D. Toxicity and risk of permethrin and naled to non–target insects after adult mosquito management. Ecotoxicol. 19, 1140–1146 (2010).CrossRefGoogle Scholar
  46. 46.
    Kingsley, G. R. The direct biuret method for the determination of serum proteins as applied to photoelectric and visual colorimetry. J. Lab. Clin. Med. 27, 840–845 (1942).Google Scholar
  47. 47.
    Ellman, G. L., Courtney, K. D., Andreas, V. Jr. & Featherstone, R. M. A new and rapid calorimetric determination of cholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).CrossRefGoogle Scholar
  48. 48.
    Bunyan, P. J. & Jennings, D. M. Organophosphorus poisoning; some properties of avian esterase. J. Lab. Clin. Med. 16, 326–331 (1968).Google Scholar
  49. 49.
    Hamilton, M. A., Russo, R. C. & Thurston, R. V. Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Tech. 11, 714–719 (1977).CrossRefGoogle Scholar
  50. 50.
    Ayres, M. Jr., Ayres, D. & Santos, A. BioEstat, Versao 5.0. Sociedade Civil Mamirauá, MCT–CNPq, https:// www.mamiraua.org.br/pt–br/downloads/programas/ bioestat–versao–53/ (2008).Google Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Nature B.V. 2018

Authors and Affiliations

  • Rafael C. Lajmanovich
    • 1
    • 2
    Email author
  • Paola M. Peltzer
    • 1
    • 2
  • Candela S. Martinuzzi
    • 1
    • 2
  • Andrés M. Attademo
    • 1
    • 2
  • Agustín Bassó
    • 1
  • Mariana I. Maglianese
    • 1
  • Carlina L. Colussi
    • 1
  1. 1.Ecotoxicology Laboratory, Faculty of Biochemistry and Biological Sciences, FBCB-UNLCiudad UniversitariaSanta FeArgentina
  2. 2.National Council for Scientific and Technical Research (CONICET)Buenos AiresArgentina

Personalised recommendations