Advertisement

Toxicology and Environmental Health Sciences

, Volume 10, Issue 5, pp 229–236 | Cite as

Aptasensors for Pesticide Detection

  • Simranjeet Singh Sekhon
  • Ga-Young Park
  • Dae-Young Park
  • Sang Yong Kim
  • Ji-Hyang Wee
  • Ji-Young Ahn
  • Yang-Hoon Kim
Mini review
  • 3 Downloads

Abstract

Pesticides are one of the prominent issues in food safety and environmental pollution, and a rapid pesticide residue detection method is urgently needed to keep humans from being affected. Aptamers are single stranded DNA- and RNA- based oligonucleotides that can bind to their targets with high affinity and specificity, and have tremendous applications as therapeutic and diagnostic agent. The properties of conformational changes upon target-analyte binding make them most appropriate and suitable candidate to design label free and portable bio-devices for analytical applications.

Purpose of Review:Although aptamer applications are dominated by clinical or medical diagnostics, initial steps have been taken for the application of aptamers to ensure food safety. In this review, we discuss the role of aptamers in the detection of pesticides whose presence in foods pose serious threat to human health.

Keywords

Aptamer Pesticides Aptasensors Organophosphorus pesticides Profenofos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FAO (Food and Agriculture Organization); WHO (World Health Organization). Manual on Development and Use of FAO and WHO Specifications for Pesticides, https:// www.who.int/whopes/resources/9789251092651/en/ (2016).Google Scholar
  2. 2.
    Jin, B., Xie, L., Guo, Y. & Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 46, 399–409 (2012).CrossRefGoogle Scholar
  3. 3.
    Liu, D. et al. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 84, 4185–4191 (2012).CrossRefGoogle Scholar
  4. 4.
    Lee, J. & Lee, H. K. Fully automated dynamic in–syringe liquid–phase microextraction and on–column derivatization of carbamate pesticides with gas chromatography/ mass spectrometric analysis. Anal. Chem. 83, 6856–6861 (2011).CrossRefGoogle Scholar
  5. 5.
    Martínez–Uroz, M. A., Mezcua, M., Valles, N. B. & Fernández–Alba, A. R. Determination of selected pesticides by GCwith simultaneous detection by MS(NCI) and µ–ECD in fruit and vegetable matrices. Anal. Bioanal. Chem. 402, 1365–1372 (2012).CrossRefGoogle Scholar
  6. 6.
    Punzi, J. S., Lamont, M., Haynes, D. & Epstein, R. L. USDA pesticide data program: pesticide residues on fresh and processed fruit and vegetables, grains, meats, milk, and drinking water. Outlooks on Pest Management 16, doi: 10.1564/16jun12 (2005).Google Scholar
  7. 7.
    Van Dorst, B. tet al. Recent advances in recognition elements of food and environmental biosensors: a review. {iBiosens. Bioelectron}. 26, 1178–1194 (2010).CrossRefGoogle Scholar
  8. 8.
    Wang, L. et al. Development of a specific enzymelinked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticide fenthion in real samples based on monoclonal antibody. Anal. Lett. 44, 1591–1601 (2011).CrossRefGoogle Scholar
  9. 9.
    Xu, Z. L. et al. Monitoring of organophosphorus pesticides in vegetables using monoclonal antibody–based direct competitive ELISA followed by HPLC–MS/MS. Food Chem. 131, 1569–1576 (2012).CrossRefGoogle Scholar
  10. 10.
    Hua, X. et al. Multi–analyte enzyme–linked immunosorbent assay for organophosphorus pesticides and neonicotinoid insecticides using a bispecific monoclonal antibody. Anal. Method. 5, 1556–1563 (2013).CrossRefGoogle Scholar
  11. 11.
    Ercegovich, C. D. et al. Development of a radioimmunoassay for parathion. J. Agric. Food Chem. 29, 559–563 (1981).CrossRefGoogle Scholar
  12. 12.
    Hall, J. C., Deschamps, R. J. & Krieg, K. K. Immunoassays for the detection of 2, 4–D and picloram in river water and urine. J. Agric. Food Chem. 37, 981–984 (1989).CrossRefGoogle Scholar
  13. 13.
    Guo, Y., Tian, J., Liang, C., Zhu, G. & Gui, W. Multiplex bead–array competitive immunoassay for simultaneous detection of three pesticides in vegetables. Microchim. Act. 180, 387–395 (2013).CrossRefGoogle Scholar
  14. 14.
    White, S. in Handbook of Food Analysis, Second Edition–3 Volume Set (CRC Press, USA, 2004).Google Scholar
  15. 15.
    Verma, N. & Bhardwaj, A. Biosensor technology for pesticides—a review. Biotechnol. Appl. Biochem. 175, 3093–3119 (2015).CrossRefGoogle Scholar
  16. 16.
    Um, H. J., Kim, M., Lee, S. H. & Kim, Y. H. Preventing the formation of positive transcription elongation factor b by human cyclin T1–binding RNA aptamer for anti–HIV transcription. AID. 26, 1599–1605 (2012).CrossRefGoogle Scholar
  17. 17.
    Sekhon, S. S. et al. Aptabody–aptatope interactions in aptablotting assays. Nanoscal. 9, 7464–7475 (2017).CrossRefGoogle Scholar
  18. 18.
    Sekhon, S. S. et al. Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP). Nanoscal. 9, 2883–2894 (2017).CrossRefGoogle Scholar
  19. 19.
    Sekhon, S. S. et al. Advances in pathogen–associated molecules detection using Aptamer based biosensors. Mol. Cell. Toxicol. 9, 311–317 (2013).CrossRefGoogle Scholar
  20. 20.
    Lee, S. H. et al. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens. Bioelectron. 68, 272–280 (2015).CrossRefGoogle Scholar
  21. 21.
    Song, M. S. et al. Detecting and Discriminating Shigella sonnei Using an Aptamer–Based Fluorescent Biosensor Platform. Molecules 22, doi: 10.3390/molecules 22050825 (2017).Google Scholar
  22. 22.
    Lee, K. A. et al. Aptamer–based Sandwich Assay and its Clinical Outlooks for Detecting Lipocalin–2 in Hepatocellular Carcinoma (HCC). Sci. Rep. 5, doi: 10.1038/ srep10897 (2015).Google Scholar
  23. 23.
    Ruscito, A. & DeRosa, M. C. Small–molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem. 4, doi: 10.3389/fchem.2016. 00014 (2016).Google Scholar
  24. 24.
    Cao, F. et al. In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Biosci. Biotechnol. Biochem. 80, 823–832 (2016).CrossRefGoogle Scholar
  25. 25.
    Nguyen, V. T., Kwon, Y. S., Kim, J. H. & Gu, M. B. Multiple GO–SELEX for efficient screening of flexible aptamers. Chem. Comm. 50, 10513–10516 (2014).CrossRefGoogle Scholar
  26. 26.
    Gopinath, S. C. B. Methods developed for SELEX. Anal. Bioanal. Chem. 387, 171–182 (2007).CrossRefGoogle Scholar
  27. 27.
    Lang, Q., Han, L., Hou, C., Wang, F. & Liu, A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talant. 156, 34–41 (2016).CrossRefGoogle Scholar
  28. 28.
    Hassani, S. et al. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 91, 109–130 (2017).CrossRefGoogle Scholar
  29. 29.
    Arduini, F., Guidone, S., Amine, A., Palleschi, G. & Moscone, D. Acetylcholinesterase biosensor based on self–assembled monolayer–modified gold–screen printed electrodes for organophosphorus insecticide detection. Sens. Actuator B–Chem. 179, 201–208 (2013).CrossRefGoogle Scholar
  30. 30.
    Guo, L. et al. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine–starch color reaction. Anal. Chim. Act. 967, 59–63 (2017).CrossRefGoogle Scholar
  31. 31.
    Zhang, W., Asiri, A. M., Liu, D., Du, D. & Lin, Y. Nanomaterial–based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Anal. Chem. 54, 1–10 (2014).CrossRefGoogle Scholar
  32. 32.
    Nuo, D. U. A. N., Shi–Jia, W. U. & Zhou–Ping, W. A. N. G. An aptamer–based fluorescence assay for ochratoxin A. Chinese J. Anal. Chem. 39, 300–304 (2011).CrossRefGoogle Scholar
  33. 33.
    Chen, J., Fang, Z., Liu, J. & Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure–switching signaling aptamer. Food Contro. 25, 555–560 (2012).CrossRefGoogle Scholar
  34. 34.
    Luan, Y., Lu, A., Chen, J., Fu, H. & Xu, L. A Label–Free Aptamer–Based Fluorescent Assay for Cadmium Detection. Appl. Sci. 6, doi:10.3390/app6120432 (2016).Google Scholar
  35. 35.
    Song, K. M. et al. Gold nanoparticle–based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 415, 175–181 (2011).CrossRefGoogle Scholar
  36. 36.
    Barthelmebs, L., Jonca, J., Hayat, A., Prieto–Simon, B. & Marty, J. L. Enzyme–linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Contro. 22, 737–743 (2011).CrossRefGoogle Scholar
  37. 37.
    Jiang, Y., Tian, J., Hu, K., Zhao, Y. & Zhao, S. Sensitive aptamer–based fluorescence polarization assay for mercury (II) ions and cysteine using silver nanoparticles as a signal amplifier. Microchim. Act. 181, 1423–1430 (2014).CrossRefGoogle Scholar
  38. 38.
    Bonel, L., Vidal, J. C., Duato, P. & Castillo, J. R. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens. Bioelectron. 26, 3254–3259 (2011).CrossRefGoogle Scholar
  39. 39.
    Lu, C., Tang, Z., Liu, C., Kang, L. & Sun, F. Magneticnanobead–based competitive enzyme–linked aptamer assay for the analysis of oxytetracycline in food. Anal. Bioanal. Chem. 407, 4155–4163 (2015).CrossRefGoogle Scholar
  40. 40.
    Cruz–Aguado, J. A. & Penner, G. Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 56, 10456–10461 (2008).CrossRefGoogle Scholar
  41. 41.
    Mannironi, C., Di Nardo, A., Fruscoloni, P. & Tocchini–Valentini, G. P. In vitro selection of dopamine RNA ligands. Biochemistr. 36, 9726–9734 (1997).CrossRefGoogle Scholar
  42. 42.
    Kato, T., Takemura, T., Yano, K., Ikebukure, K. & Karube, I. In vitro selection of DNA aptamers which bind to cholic acid. Biochim. Biophys. Act. 1493, 12–18 (2000).CrossRefGoogle Scholar
  43. 43.
    Majerfeld, I., Puthenvedu, D. & Yarus, M. RNA affinity for molecular L–histidine; genetic code origins. J. Mol. Evol. 61, 226–235 (2005).CrossRefGoogle Scholar
  44. 44.
    Lee, J. H., Yigit, M. V., Mazumdar, D. & Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer–nanomaterial conjugates. Adv. Drug Delivery Rev. 62, 592–605 (2010).CrossRefGoogle Scholar
  45. 45.
    Wang, P. et al. Aptamer–wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 59, 237–242 (2016).CrossRefGoogle Scholar
  46. 46.
    Bala, R. et al. Detection of organophosphorus pesticide— Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 311, 111–116 (2017).CrossRefGoogle Scholar
  47. 47.
    Dong, J. et al. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Contro. 25, 543–549 (2012).CrossRefGoogle Scholar
  48. 48.
    Shrivastav, A. M., Usha, S. P. & Gupta, B. D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 79, 150–157 (2016).CrossRefGoogle Scholar
  49. 49.
    Xu, G. et al. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers–single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talant. 178, 1046–1052 (2018).CrossRefGoogle Scholar
  50. 50.
    Shi, H. et al. Selective and visible–light–driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem. Commun. 19, 111–114 (2012).CrossRefGoogle Scholar
  51. 51.
    Dou, X., Chu, X., Kong, W., Luo, J. & Yang, M. A goldbased nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal. Chim. Act. 891, 291–297 (2015).CrossRefGoogle Scholar
  52. 52.
    Weerathunge, P., Ramanathan, R., Shukla, R., Sharma, T. K. & Bansal, V. Aptamer–controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86, 11937–11941 (2014).CrossRefGoogle Scholar
  53. 53.
    Zhang, C. et al. Organophosphorus pesticides detection using broad–specific single–stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 55, 216–219 (2014).CrossRefGoogle Scholar
  54. 54.
    Li, W. A. N. G., Hua, Y. E., Hong–Qing, S. A. N. G. & Dan–Dan, W. A. N. G. Aptamer–based fluorescence assay for detection of Isocarbophos and Profenofos. Chinese J. Anal. Chem. 44, 799–803 (2016).CrossRefGoogle Scholar
  55. 55.
    Li, C., Zhang, G., Wu, S. & Zhang, Q. Aptamer–based microcantilever–array biosensor for profenofos detection. Anal. Chim. Act. 1020, 116–122 (2018).CrossRefGoogle Scholar

Copyright information

© Korean Society of Environmental Risk Assessment and Health Science and Springer Nature B.V. 2018

Authors and Affiliations

  • Simranjeet Singh Sekhon
    • 1
  • Ga-Young Park
    • 1
    • 2
  • Dae-Young Park
    • 1
    • 2
  • Sang Yong Kim
    • 3
  • Ji-Hyang Wee
    • 4
  • Ji-Young Ahn
    • 1
  • Yang-Hoon Kim
    • 1
  1. 1.School of Biological SciencesChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.HPBio Inc.SeoulRepublic of Korea
  3. 3.Department of Food Science and BiotechnologyShin Ansan UniversityAnsanRepublic of Korea
  4. 4.Jeonnam Bioindustry Foundation Food Research InstituteChuncheonRepublic of Korea

Personalised recommendations