, Volume 55, Issue 4, pp 1343–1361 | Cite as

Extension, Compression, and Beyond: A Unique Classification System for Mortality Evolution Patterns

  • Matthias Börger
  • Martin GenzEmail author
  • Jochen Ruß


A variety of literature addresses the question of how the age distribution of deaths changes over time as life expectancy increases. However, corresponding terms such as extension, compression, or rectangularization are sometimes defined only vaguely, and statistics used to detect certain scenarios can be misleading. The matter is further complicated because mixed scenarios can prevail, and the considered age range can have an impact on observed mortality patterns. In this article, we establish a unique classification framework for realized mortality scenarios that allows for the detection of both pure and mixed scenarios. Our framework determines whether changes of the deaths curve over time show elements of extension or contraction; compression or decompression; left- or right-shifting mortality; and concentration or diffusion. The framework not only can test the presence of a particular scenario but also can assign a unique scenario to any observed mortality evolution. Furthermore, it can detect different mortality scenarios for different age ranges in the same population. We also present a methodology for the implementation of our classification framework and apply it to mortality data for U.S. females.


Mortality scenario classification Rectangularization Shifting mortality Extension Compression 


  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csáki (Eds.), 2nd international symposium on information theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971 (pp. 267–281). Budapest, Hungary: Akadémiai Kiadó.Google Scholar
  2. Bongaarts, J. (2005). Long-range trends in adult mortality: Models and projection methods. Demography, 42, 23–49.CrossRefGoogle Scholar
  3. Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic Research, 19(article 30), 1179–1204. CrossRefGoogle Scholar
  4. Cheung, S. L. K., & Robine, J.-M. (2007). Increase in common longevity and the compression of mortality: The case of Japan. Population Studies, 61, 85–97.CrossRefGoogle Scholar
  5. Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C., & Caselli, G. (2005). Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension. Demography, 42, 243–258.CrossRefGoogle Scholar
  6. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28, 591–605.CrossRefGoogle Scholar
  7. Debón, A., Martínez-Ruiz, F., & Montes, F. (2011, January). Temporal evolution of some mortality indicators: Application to Spanish data. Paper presented at the 2011 Living to 100 Society of Actuaries International Symposium, Orlando, FL. Retrieved from
  8. Demetrius, L. (1974). Demographic parameters and natural selection. Proceedings of the National Academy of Sciences, 12, 4645–4647.CrossRefGoogle Scholar
  9. Finch, C. E., & Pike, M. C. (1996). Maximum life span predictions from the Gompertz mortality model. Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 51A, B183–B194.Google Scholar
  10. Fries, J. F. (1980). Aging, natural death, and the compression of morbidity. New England Journal of Medicine, 303, 130–135.CrossRefGoogle Scholar
  11. Gampe, J. (2010). Human mortality beyond age 110. In H. Maier, J. Gampe, B. Jeune, J.-M. Robine, & J. W. Vaupel (Eds.), Supercentenarians: Demographic research monographs (pp. 219–230). Heidelberg, Germany: Springer-Verlag.Google Scholar
  12. Genz, M. (2017, January). A comprehensive analysis of the patterns of worldwide mortality evolution. Paper presented at the 2017 Living to 100 Society of Actuaries International Symposium, Orlando, FL. Retrieved from
  13. Human Mortality Database (HMD). (n.d.). Berkeley: University of California, and Rostock, Germany: Max Planck Institute for Demographic Research. Retrieved from
  14. Kannisto, V. (2000). Measuring the compression of mortality. Demographic Research, 3(article 6).
  15. Kannisto, V. (2001). Mode and dispersion of the length of life. Population: An English Selection, 13(1), 159–172.Google Scholar
  16. Keyfitz, N. (1985). Applied mathematical demography (2nd ed.). New York, NY: Springer Verlag.CrossRefGoogle Scholar
  17. Manton, K. G., & Tolley, H. D. (1991). Rectangularization of the survival curve: Implications of an ill-posed question. Journal of Aging and Health, 3, 172–193.CrossRefGoogle Scholar
  18. Myers, G. C., & Manton, K. G. (1984). Compression of mortality: Myth or reality? Gerontologist, 24, 346–353.CrossRefGoogle Scholar
  19. Nusselder, W. J., & Mackenbach, J. P. (1996). Rectangularization of the survival curve in the Netherlands, 1950–1992. Gerontologist, 36, 773–782.CrossRefGoogle Scholar
  20. Ouellette, N., & Bourbeau, R. (2011, January). Recent adult mortality trends in Canada, the United States and other low mortality countries. Paper presented at the Living to 100 Society of Actuaries International Symposium, Orlando, FL. Retrieved from
  21. Robine, J.-M., Cheung, S. L. K., Horiuchi, S., & Thatcher, A. R. (2008, January). Is there a limit to the compression of mortality? Paper presented at the Living to 100 and Beyond Society of Actuaries Symposium Orlando, FL. Retrieved from
  22. Rossi, I. A., Rousson, V., & Paccaud, F. (2013). The contribution of rectangularization to the secular increase of life expectancy: An empirical study. International Journal of Epidemiology, 42, 250–258.CrossRefGoogle Scholar
  23. Thatcher, A. R., Cheung, S. L., Horiuchi, S., & Robine, J.-M. (2010). The compression of deaths above the mode. Demographic Research, 22(article 17), 505–538. CrossRefGoogle Scholar
  24. Wilmoth, J. R. (1997). In search of limits. In K. W. Wachter & C. E. Finch (Eds.), Between Zeus and the salmon: The biodemography of longevity (pp. 38–64). Washington, DC: National Academies Press.Google Scholar
  25. Wilmoth, J. R. (2000). Demography of longevity: Past, present, and future trends. Experimental Gerontology, 35, 1111–1129.CrossRefGoogle Scholar
  26. Wilmoth, J. R., & Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within human populations. Demography, 36, 475–495.CrossRefGoogle Scholar

Copyright information

© Population Association of America 2018

Authors and Affiliations

  1. 1.Institut für Finanz- und Aktuarwissenschaften (ifa)UlmGermany
  2. 2.Institut für VersicherungswissenschaftenUniversität UlmUlmGermany

Personalised recommendations