Advertisement

Gold Bulletin

, Volume 52, Issue 3–4, pp 125–133 | Cite as

Facile construction of calix[4]pyrrole-templated gold nanoparticles: computational insights and application for efficient reduction of 4-nitrophenol

  • Anita Kongor
  • Manthan Panchal
  • Mohd Athar
  • Keyur Bhatt
  • P. C. Jha
  • Vinod JainEmail author
Original Paper
  • 13 Downloads

Abstract

Herein, we report a simple one-pot synthesis of water-dispersible gold nanoparticles (AuNPs) by using meso-tetra(methyl) meso-tetra hydrazide-functionalized calix[4]pyrrole (ECPTH) as both reducing and stabilizing template. The characterization of ECPTH-AuNPs has been carried out by UV-Vis spectroscopy, transmission electron microscope, X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential techniques. The spherical shaped nanoparticles are highly stable with an average size of 8 ± 2 nm. The mechanistic insights rendered by the computational study have suggested that ECPTH can successfully cap the Au via utilizing the hydrazide arms. The nanoparticles functioned as an effective heterogeneous catalyst for the 4-nitrophenol reduction and ECPTH as capping ligand enhances the catalytic activity via a synergistic effect. This work contributes a new catalytic pathway for the degradation of hazardous and toxic pollutants using highly efficient and cost-effective supramolecular-functionalized nanocatalyst.

Graphical Abstract

Graphical Abstract

Keywords

Gold nanoparticles Calix[4]pyrrole Catalytic reduction 4-Nitrophenol Computational modeling 

Notes

Funding information

The authors thank the financial assistance provided by DST-SERB, New Delhi, through the project scheme SERB REF. No EMR/2016/001958. The authors, Anita Kongor and Mohd Athar, gratefully acknowledge the financial assistance provided by the Department of Science & Technology (DST)—Innovation in Science Pursuit for Inspired Research (INSPIRE), New Delhi. One of the authors, Manthan Panchal, gratefully acknowledges the Human Resource Development Group—Council of Scientific & Industrial Research (CSIR), New Delhi, for Research Associate fellowship (File No. 09/70 (0064) 2K19 EMR-I). The authors also acknowledge Central Salt & Marine Chemicals Research Institute (Bhavnagar), Oxygen Healthcare-Ahmedabad (O2h), Sophisticated Analytical Instrument Facility (Panjab University), and Gujarat Forensic Sciences University (Gandhinagar), for providing instrumental facilities and UGC Infonet & Information and Library Network (INFLIBNET) (Ahmedabad) for e-journals.

Supplementary material

13404_2019_265_MOESM1_ESM.docx (13.2 mb)
ESM 1 (DOCX 13548 kb)

References

  1. 1.
    Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3-4):997–1026CrossRefGoogle Scholar
  2. 2.
    Bharath G, Veeramani V, Chen S-M, Madhu R, Raja MM, Balamurugan A, Mangalaraj D, Viswanathan C, Ponpandian N (2015) Edge-carboxylated graphene anchoring magnetite-hydroxyapatite nanocomposite for an efficient 4-nitrophenol sensor. RSC Adv 5(18):13392–13401CrossRefGoogle Scholar
  3. 3.
    Lipczynska-Kochany E (1991) Novel method for a photocatalytic degradation of 4-nitrophenol in homogeneous aqeuous solution. Environ Technol 12(1):87–92CrossRefGoogle Scholar
  4. 4.
    Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34(16):3474–3479CrossRefGoogle Scholar
  5. 5.
    Howe GE, Marking LL, Bills TD, Rach JJ, Mayer FL (1994) Effects of water temperature and pH on toxicity of terbufos, trichlorfon, 4-nitrophenol and 2, 4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 13(1):51–66CrossRefGoogle Scholar
  6. 6.
    Harrison MA, Barra S, Borghesi D, Vione D, Arsene C, Olariu RI (2005) Nitrated phenols in the atmosphere: a review. Atmos Environ 39(2):231–248CrossRefGoogle Scholar
  7. 7.
    Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136CrossRefGoogle Scholar
  8. 8.
    Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15(3):1869–1894CrossRefGoogle Scholar
  9. 9.
    De Silva N, Ha J-M, Solovyov A, Nigra MM, Ogino I, Yeh SW, Durkin KA, Katz A (2010) A bioinspired approach for controlling accessibility in calix [4] arene-bound metal cluster catalysts. Nat Chem 2(12):1062–1068CrossRefGoogle Scholar
  10. 10.
    Ha J-M, Solovyov A, Katz A (2009) Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir 25(18):10548–10553CrossRefGoogle Scholar
  11. 11.
    Rambabu D, Pradeep CP, Dhir A (2015) Self-assembled material of palladium nanoparticles and a thiacalix [4] arene Cd (II) complex as an efficient catalyst for nitro-phenol reduction. New J Chem 39(10):8130–8135CrossRefGoogle Scholar
  12. 12.
    Kongor A, Panchal M, Athar M, Jha PC, Jhala D, Sindhav G, Shah N, Jain VK (2018) Selective fluorescence sensing of Cu (II) ions using calix [4] pyrrole fabricated Ag nanoparticles: a spectroscopic and computational approach. J Mol Liq 269:467–475CrossRefGoogle Scholar
  13. 13.
    Kongor A, Panchal M, Athar M, Makwana B, Sindhav G, Jha P, Jain V (2018) Synthesis and modeling of calix [4] pyrrole wrapped Au nanoprobe for specific detection of Pb (II): antioxidant and radical scavenging efficiencies. J Photochem Photobiol 364:801–810CrossRefGoogle Scholar
  14. 14.
    Kongor A, Panchal M, Athar M, Mehta V, Bhatt K, Jha P, Jain V (2018) Heterogeneous hydrogenation using stable and reusable calix [4] pyrrole fenced Pt nanoparticles and its mechanistic insight. Appl Surf Sci 437:195–201CrossRefGoogle Scholar
  15. 15.
    Akar A, Aydogan A (2005) Synthesis of meso-tetra acid and ester functionalized calix [4] pyrroles. J Heterocyclic Chem 42(5):931–934CrossRefGoogle Scholar
  16. 16.
    Makwana BA, Darjee S, Jain VK, Kongor A, Sindhav G, Rao MV (2017) A comparative study: metal nanoparticles as fluorescent sensors for biomolecules and their biomedical application. Sensors Actuators B Chem 246:686–695CrossRefGoogle Scholar
  17. 17.
    Lang Z, Gabas IM, López X, Clotet A, Jesús M, Mitchell SG, Poblet JM (2016) On the formation of gold nanoparticles from [Au III Cl 4] and a non-classical reduced polyoxomolybdate as an electron source: a quantum mechanical modelling and experimental study. New J Chem 40(2):1029–1038CrossRefGoogle Scholar
  18. 18.
    Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC 2006 conference, proceedings of the ACM/IEEE. IEEE, pp 43-43Google Scholar
  19. 19.
    Release S (2014) 1: Desmond molecular dynamics system, version 3.7. DE Shaw Research. Maestro-Desmond Interoperability Tools, New York version 3Google Scholar
  20. 20.
    Frisch MJ, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision A. 1. Gaussian Inc Wallingford CT 27:34Google Scholar
  21. 21.
    Singh DK, Jagannathan R, Khandelwal P, Abraham PM, Poddar P (2013) In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale 5(5):1882–1893CrossRefGoogle Scholar
  22. 22.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRefGoogle Scholar
  23. 23.
    Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 58(1):3–7Google Scholar
  24. 24.
    Zhang G, Guo W, Wang X (2007) Sonochemical formation of nanocrystalline gold in aqueous solution. Mater Res Innov 11(4):201–203CrossRefGoogle Scholar
  25. 25.
    Assefa AG, Mesfin AA, Akele ML, Alemu AK, Gangapuram BR, Guttena V, Alle M (2017) Microwave-assisted green synthesis of gold nanoparticles using Olibanum gum (Boswellia serrate) and its catalytic reduction of 4-nitrophenol and hexacyanoferrate (III) by sodium borohydride. J Clust Sci 28(3):917–935CrossRefGoogle Scholar
  26. 26.
    Huang N, Lim H, Radiman S, Khiew P, Chiu W, Hashim R, Chia CH (2010) Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties. Colloids Surf. A 353(1):69–76Google Scholar
  27. 27.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936CrossRefGoogle Scholar
  28. 28.
    Hashmi ASK, Hutchings GJ (2013) Gold Catalysis–the journey continues. Catal Sci Technol 3(11):2861–2861CrossRefGoogle Scholar
  29. 29.
    Nigra MM, Ha J-M, Katz A (2013) Identification of site requirements for reduction of 4-nitrophenol using gold nanoparticle catalysts. Catal Sci Technol 3(11):2976–2983CrossRefGoogle Scholar
  30. 30.
    Ray P, Clément M, Martini C, Abdellah I, Beaunier P, Rodriguez-Lopez J-L, Huc V, Remita H, Lampre I (2018) Stabilisation of small mono-and bimetallic gold–silver nanoparticles using calix[8]arene derivatives. New J Chem 42(17):14128–14137CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, Guo Z, Li X, Wang C, Liu Y (2011) In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chem Commun 47(13):3906–3908CrossRefGoogle Scholar
  32. 32.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111(12):4596–4605CrossRefGoogle Scholar
  33. 33.
    Ibrahim N, Vilhelmsen MH, Pernpointner M, Rominger F, Hashmi ASK (2013) Gold phenolate complexes: synthesis, structure, and reactivity. Organometallics 32(9):2576–2583CrossRefGoogle Scholar
  34. 34.
    Kuroda K, Ishida T, Haruta M (2009) Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J Mol Catal A 298(1-2):7–11CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Liu S, Lu W, Wang L, Tian J, Sun X (2011) In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal Sci Technol 1(7):1142–1144CrossRefGoogle Scholar
  36. 36.
    Lin F-h, R-a D (2011) Bifunctional Au− Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J PhysChem C 115(14):6591–6598Google Scholar
  37. 37.
    Fan C-M, Zhang L-F, Wang S-S, Wang D-H, Lu L-Q, Xu A-W (2012) Novel CeO 2 yolk–shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Nanoscale 4(21):6835–6840CrossRefGoogle Scholar
  38. 38.
    Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X (2014) Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano 1(1):71–79CrossRefGoogle Scholar
  39. 39.
    Hayakawa K, Yoshimura T, Esumi K (2003) Preparation of gold−dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 19(13):5517–5521CrossRefGoogle Scholar
  40. 40.
    Seo YS, Ahn E-Y, Park J, Kim TY, Hong JE, Kim K, Park Y, Park Y (2017) Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res Lett 12(1):7CrossRefGoogle Scholar
  41. 41.
    Gong C, Zhou Z, Li J, Zhou H, Liu R (2018) Facile synthesis of ultra stable Fe3O4@Carbon core-shell nanoparticles entrapped satellite au catalysts with enhanced 4-nitrophenol reduction property. J Taiwan Inst Chem Eng 84:229–235CrossRefGoogle Scholar
  42. 42.
    Marcelo G, Muñoz-Bonilla A, Fernández-García M (2012) Magnetite–polypeptide hybrid materials decorated with gold nanoparticles: study of their catalytic activity in 4-nitrophenol reduction. J Phys Chem C 116(46):24717–24725CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of SciencesGujarat UniversityAhmedabadIndia
  2. 2.CCG@CUG, School of Chemical SciencesCentral University of GujaratGandhinagarIndia
  3. 3.Mehsana Urban Institute of Science, Department of ChemistryGanpat UniversityKhervaIndia
  4. 4.CCG@CUG, Centre for Applied ChemistryCentral University of GujaratGandhinagarIndia

Personalised recommendations