Gold Bulletin

, Volume 52, Issue 1, pp 19–26 | Cite as

One-pot synthesized porphyrin-based polymer supported gold nanoparticles as efficient catalysts for alkyne hydration and alcohol oxidation in water

  • Jian Chen
  • Ju Zhang
  • Dajian ZhuEmail author
  • Tao LiEmail author
Original Paper


The construction of porous organic polymer from 5,10,15,20-tetraphenylporphyrin (TPP) was described using one-pot Friedel-Crafts alkylation reaction. Au was simultaneously loaded on the porphyrin-based polymer denoted as Au/KAPs(DCM-TPP). This polymer-supported Au was fully characterized by many physicochemical methods. It was found to possess BET surface area of 796 m2 g−1, good thermal stability above 250 °C and Au nanoparticles with an average size of 8 nm. It was used as an efficient heterogeneous catalyst for alkyne hydration and alcohol oxidation in water. This Au catalyst exhibited excellent catalytic efficiency and recycling performance without loss of activity at least five times. A new strategy to synthesize polymer-supported Au nanoparticle catalyst was finally provided.


Porphyrin-based polymer Gold nanoparticles Alkyne hydration Alcohol oxidation 



We are also grateful to the Analytical and Testing Center of Huazhong University of Science and Technology, ATC School of Chemistry and Chemical Engineering, HUST, Wuhan, China.

Funding information

This work was supported by the National Natural Science Foundation of China (21473064) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education Foundation (CHCL15001).

Supplementary material

13404_2018_249_MOESM1_ESM.doc (4.2 mb)
ESM 1 (DOC 4.19 MB)


  1. 1.
    Zhang Y, Zhou Y, Zhao Y, Liu C-J (2016) Recent progresses in the size and structure control of MOF supported noble metal catalysts. Catal Today 263:61–68CrossRefGoogle Scholar
  2. 2.
    Cui T-L, Ke W-Y, Zhang W-B, Wang H-H, Li X-H, Chen J-S (2016) Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew Chem Int Ed 55:9178–9182CrossRefGoogle Scholar
  3. 3.
    Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 311:1–23CrossRefGoogle Scholar
  4. 4.
    Soukup K, Topka P, Hejtmanek V, Petras D, Vales V, Solcova O (2014) Noble metal catalysts supported on nanofibrous polymeric membranes for environmental applications. Catal Today 236:3–11CrossRefGoogle Scholar
  5. 5.
    Li B, Guan Z, Wang W, Yang X, Hu J, Tan B, Li T (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki–Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24:3390–3395CrossRefGoogle Scholar
  6. 6.
    Gu C, Huang N, Chen Y, Zhang H, Zhang S, Li F, Ma Y, Jiang D (2016) Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions. Angew Chem Int Ed 55:3049–3053CrossRefGoogle Scholar
  7. 7.
    Chang G, Shang Z, Yu T, Yang L (2016) Rational design of a novel indole-based microporous organic polymer: enhanced carbon dioxide uptake via local dipole–π interactions. J Mater Chem A 4:2517–2523CrossRefGoogle Scholar
  8. 8.
    Li L, Fang W, Zhang P, Bi J, He Y, Wang J, Su W (2016) Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem A 4:12402–12406CrossRefGoogle Scholar
  9. 9.
    Huang N, Zhai L, Coupry DE, Addicoat MA, Okushita K, Nishimura K, Heine T, Jiang D (2016) Multiple-component covalent organic frameworks. Nat Commun 7:12325–12336CrossRefGoogle Scholar
  10. 10.
    Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G (2015) Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew Chem Int Ed 54:12733–12737CrossRefGoogle Scholar
  11. 11.
    Yuan Y, Sun F, Li L, Cui P, Zhu G (2014) Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves. Nat Commun 5:4260–4268CrossRefGoogle Scholar
  12. 12.
    Ding S, Gao J, Wang Q, Zhang Y, Song W, Su C, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc 133:19816–19822CrossRefGoogle Scholar
  13. 13.
    J Doonan C, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238CrossRefGoogle Scholar
  14. 14.
    Wan S, Guo J, Kim J, Ihee H, Jiang D (2009) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew Chem Int Ed 48:5439–5442CrossRefGoogle Scholar
  15. 15.
    Tanaka T, Osuka A (2015) Conjugated porphyrin arrays: synthesis, properties and applications for functional materials. Chem Soc Rev 44:943–969CrossRefGoogle Scholar
  16. 16.
    Rose E, Andrioletti B, Zrig S, Quelquejeu-Ethève M (2005) Enantioselective epoxidation of olefins with chiral metalloporphyrin catalysts. Chem Soc Rev 34:573–583CrossRefGoogle Scholar
  17. 17.
    Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc 132:9138–9143CrossRefGoogle Scholar
  18. 18.
    Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu C (2012) A multifunctional organic–inorganic hybrid structure based on MnIII–porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J Am Chem Soc 134:87–90CrossRefGoogle Scholar
  19. 19.
    Liu X, Sigen A, Zhang Y, Luo X, Xia H, Li H, Mu Y (2014) A porphyrin-linked conjugated microporous polymer with selective carbon dioxide adsorption and heterogeneous organocatalytic performances. RSC Adv 4:6447–6453CrossRefGoogle Scholar
  20. 20.
    Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal−organic framework materials. J Am Chem Soc 133:5652–5655CrossRefGoogle Scholar
  21. 21.
    Budd PM, Ghanem B, Msayib K, McKeown NB, Tattershall C (2003) A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. J Mater Chem 13:2721–2726CrossRefGoogle Scholar
  22. 22.
    Li B, Guan Z, Yang X, Wang WD, Wang W, Hussain I, Song K, Tan B, Li T (2014) Multifunctional microporous organic polymers. J Mater Chem A 2:11930–11939CrossRefGoogle Scholar
  23. 23.
    Dou Z, Xu L, Zhi Y, Zhang Y, Xia H, Mu Y, Liu X (2016) Metalloporphyrin-based hypercrosslinked polymers catalyze hetero-Diels–Alder reactions of unactivated aldehydes with simple dienes: a fascinating strategy for the construction of heterogeneous catalysts. Chem Eur J 22:9919–9922CrossRefGoogle Scholar
  24. 24.
    Meng S, Ma H, Jiang L, Ren H, Zhu G (2014) A facile approach to prepare porphyrinic porous aromatic frameworks for small hydrocarbon separation. J Mater Chem A 2:14536–14541CrossRefGoogle Scholar
  25. 25.
    Cameron D, Holliday R, Thompson D (2003) Gold’s future role in fuel cell systems. J Power Sources 118:298–303CrossRefGoogle Scholar
  26. 26.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  27. 27.
    Hashmi ASK (2014) Dual gold catalysis. Acc Chem Res 47:864–876CrossRefGoogle Scholar
  28. 28.
    Hashmi ASK, Pflästerer D (2016) Gold catalysis in total synthesis-recent achievements. Chem Soc Rev 45:1331–1367CrossRefGoogle Scholar
  29. 29.
    Hashmi ASK, Asiri AM (2016) Gold-catalysed reactions of diynes. Chem Soc Rev 45:4471–4503CrossRefGoogle Scholar
  30. 30.
    Schieβl J, Schulmeister J, Doppiu A, Wörner E, Rudolph M, Karch R, Hashmi ASK (2018) An industrial perspective on counter anions in gold catalysis: underestimated with respect to “ligand effects”. Adv Synth Catal 360:2493–2502CrossRefGoogle Scholar
  31. 31.
    Schieβl J, Schulmeister J, Doppiu A, Wörner E, Rudolph M, Karch R, Hashmi ASK (2018) An industrial perspective on counter anions in gold catalysis: on alternative counter anions. Adv Synth Catal 360:3949−3959Google Scholar
  32. 32.
    Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold-catalyzed C-C bond formation. Angew Chem Int Ed 39:2285–2288CrossRefGoogle Scholar
  33. 33.
    Hashmi ASK, Frost TM, Bats JW (2000) Highly selective gold-catalyzed arene synthesis. J Am Chem Soc 122:11553–11554CrossRefGoogle Scholar
  34. 34.
    Goodwin JA, Aponick A (2015) Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes. Chem Commun 51:8730–8741CrossRefGoogle Scholar
  35. 35.
    Zhu F, Wang W, Li H (2011) Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica. J Am Chem Soc 133:11632–11640CrossRefGoogle Scholar
  36. 36.
    Liang S, Jasinski J, Hammond GB, Xu B (2015) Supported gold nanoparticle-catalyzed hydration of alkynes under basic conditions. Org Lett 17:162–165CrossRefGoogle Scholar
  37. 37.
    Pan M, Gong J, Dong G, Mullins CB (2014) Model studies with gold: a versatile oxidation and hydrogenation catalyst. Acc Chem Res 47:750–760CrossRefGoogle Scholar
  38. 38.
    Prati L, Porta F (2005) Oxidation of alcohols and sugars using Au/C catalysts: part 1. Alcohols. Appl Catal A 291:199–203CrossRefGoogle Scholar
  39. 39.
    Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S (2014) Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J Am Chem Soc 136:5745–5749CrossRefGoogle Scholar
  40. 40.
    Lorencon E, Ferreira DC, Resende RR, Krambrock K (2015) Amphiphilic gold nanoparticles supported on carbon nanotubes: catalysts for the oxidation of lipophilic compounds by wet peroxide in biphasic systems. Appl Catal A 505:566–574CrossRefGoogle Scholar
  41. 41.
    Zhang C, Zhu P, Tan L, Liu J, Tan B, Yang X, Xu H (2015) Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment. Macromolecules 48:8509–8514CrossRefGoogle Scholar
  42. 42.
    Oliver-Meseguer J, Cabrero-Antonino JR, Domínguez I, Leyva-Pérez A, Corma A (2012) Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338:1452–1455CrossRefGoogle Scholar
  43. 43.
    Rostamizadeh S, Estiri H, Azad M (2014) Au anchored to (α-Fe2O3)-MCM-41-HS as a novel magnetic nanocatalyst for water-medium and solvent-free alkyne hydration. Catal Commun 57:29–35CrossRefGoogle Scholar
  44. 44.
    Lee L, Zhao Y (2014) Room temperature hydroamination of alkynes catalyzed by gold clusters in interfacially cross-linked reverse micelles. ACS Catal 4:688–691CrossRefGoogle Scholar
  45. 45.
    Zhao J, Yu G, Xin K, Li L, Fu T, Cui Y, Liu H, Xue N, Peng L, Ding W (2014) Highly active gold catalysts loaded on NiAl-oxide derived from layered double hydroxide for aerobic alcohol oxidation. Appl Catal A 482:294–299CrossRefGoogle Scholar
  46. 46.
    Yin S, Li J, Zhang H (2016) Hierarchical hollow nanostructured core@shell recyclable catalysts γ-Fe2O3@LDH@Au25-x for highly efficient alcohol oxidation. Green Chem 18:5900–5914CrossRefGoogle Scholar
  47. 47.
    Li L, Dou L, Zhang H (2014) Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols. Nanoscale 6:3753–3763CrossRefGoogle Scholar
  48. 48.
    Huang J, Cheng F, Binks BP, Yang H (2015) pH-responsive gas–water–solid interface for multiphase catalysis. J Am Chem Soc 137:15015–15025CrossRefGoogle Scholar
  49. 49.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375CrossRefGoogle Scholar
  50. 50.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Reactivity of the gold/water interface during selective oxidation catalysis. Science 330:74–78CrossRefGoogle Scholar
  51. 51.
    Kwon Y, Lai SCS, Rodriguez P, Koper MTM (2011) Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis. J Am Chem Soc 133:6914–6917CrossRefGoogle Scholar
  52. 52.
    Jurkin T, Guliš M, Dražić G, Gotić M (2016) Synthesis of gold nanoparticles under highly oxidizing conditions. Gold Bull 49:21–22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical EngineeringHuanggang Normal UniversityHuanggang CityChina

Personalised recommendations