CD147 augmented monocarboxylate transporter-1/4 expression through modulation of the Akt-FoxO3-NF-κB pathway promotes cholangiocarcinoma migration and invasion

  • Paweena Dana
  • Saowaluk Saisomboon
  • Ryusho Kariya
  • Seiji Okada
  • Sumalee Obchoei
  • Kanlayanee Sawanyawisuth
  • Chaisiri Wongkham
  • Chawalit Pairojkul
  • Sopit Wongkham
  • Kulthida VaeteewoottacharnEmail author
Original paper



Cholangiocarcinoma (CCA) is an aggressive type of cancer. The major obstacles for treatment are its late presentation and the occurrence metastases. Targeting the metastatic process may serve as a treatment option. CD147 is a membrane protein that promotes CCA metastasis. High lactate levels in CCA are predicted to result from lactate dehydrogenase A expression and sensitivity to monocarboxylate transporter (MCT) inhibitors. An involvement of CD147 in MCT maturation has been reported, but the exact role of MCT in CCA is not clear. Here, we aimed to assess the mechanism of CD147-promoted CCA progression through MCT regulation.


The expression levels of CD147 and MCT-1/4 in human CCA tissues were determined by immunohistochemistry. Two CD147 knockout (CD147 KO) CCA cell (KKU-213) clones were established using the CRISPR/Cas9 system. Cell migration and invasion were determined using a Boyden chamber assay. Temporal protein levels were modified by siRNA, specific inhibitors and/or activators. The expression of target proteins was determined using Western blot analyses.


CD147 and MCT-1/4 were found to be overexpressed in CCA tissues compared to normal bile duct tissues. In addition, we found that CD147 knockdown significantly alleviated CCA cell migration and invasion, concomitant with decreased pAkt, pFoxO3, pNF-κB (pp65) and MCT-1/4 levels. Conversely, we found that FoxO3 knockdown led to recovered migration/invasion abilities and increased pp65 and MCT-1/4 expression levels. The involvement of Akt in the regulation of MCT-1/4 expression through CD147 was established by inhibition and activation of Akt phosphorylation.


Our data indicate that CD147 promotes the malignant progression of CCA cells by activating the Akt-FoxO3-NF-κB-MCT-1/4 axis. As such, CD147 may serve as a possible target for advanced CCA treatment.


Cholangiocarcinoma CD147 Akt FoxO3 MCT NF-κB 



Protein kinase B (PKB)




Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9


Dulbecco’s modified Eagle’s medium




Epithelial-mesenchymal transition


Forkhead protein



CD147 KO

CD147 knockout


Horseradish peroxidase


Monocarboxylate transporter



The authors would like to thank Dr. Brett Stringer for LentiCRISPRv2 puro, Prof. Didier Trono for pCMVR8.74 and pMD2.G, Prof. Kazuo Umezawa, Aichi Medical University, Japan for providing DHMEQ and Prof. James A Will for editing this manuscript via the KKU Publication Clinic, Khon Kaen University, Thailand.

Funding information

This project was supported by a TRF-MRC (Newton fund) project grant to C. Pairojkul (DBG5980004), TRF Senior Research Scholar Grant to S. Wongkham (RTA5780012) and Khon Kaen University, Thailand (#KKU61003502 to K. Vaeteewoottacharn).

Compliance with ethical standards

Competing interests

The authors declare no potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were conducted in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Human CCA tissues were obtained from the specimen bank of the Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand. The patients had undergone liver resection at Srinagarind Hospital, Thailand. Informed patient consents were obtained prior to initiation of the study. The research protocol (#HE571283 and #HE581369) was approved by the Human Research Ethics Committee at Khon Kaen University.

Supplementary material

13402_2019_479_MOESM1_ESM.pptx (648 kb)
Figure S1 Characteristics of CD147 KO clones. (a) Morphologies of WT and CD147 KO cell clones. (b) Invasion and (c) proliferation abilities of CD147 KO cell clones. (d) MMP activities of CD147 KO cell clones and WT measured by gelatin zymography. (e) FoxO3 nuclear localization in CD147 KO cell clones and WT cells determined by immunofluorescence staining. Hoechst 33342 (Hoechst) was used as nuclear staining dye. (PPTX 647 kb)
13402_2019_479_MOESM2_ESM.pptx (270 kb)
Figure S2 Effect of PI3K inhibition on Akt phosphorylation and MCT-4 expression. The expression of CD147, PI3K, pAkt, Akt and MCT-4 was assessed in LY294002-treated KKU-213 cells (0-24 h). β-actin was used as loading control. (PPTX 269 kb)


  1. 1.
    B. Sripa, C. Pairojkul, Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol 24, 349–356 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    N.F. Esnaola, J.E. Meyer, A. Karachristos, J.L. Maranki, E.R. Camp, C.S. Denlinger, Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer 122, 1349–1369 (2016)PubMedCrossRefGoogle Scholar
  3. 3.
    S.A. Khan, B.R. Davidson, R.D. Goldin, N. Heaton, J. Karani, S.P. Pereira, W.M. Rosenberg, P. Tait, S.D. Taylor-Robinson, A.V. Thillainayagam, H.C. Thomas, H. Wasan, G. British, Society of, guidelines for the diagnosis and treatment of cholangiocarcinoma: An update. Gut 61(1657-1669) (2012)PubMedCrossRefGoogle Scholar
  4. 4.
    O. Warburg, Iron, the oxygen-carrier of respiration-ferment. Science 61, 575–582 (1925)PubMedCrossRefGoogle Scholar
  5. 5.
    G. van Niekerk, A.M. Engelbrecht, Role of PKM2 in directing the metabolic fate of glucose in cancer: A potential therapeutic target. Cell Oncol 41, 343–351 (2018)CrossRefGoogle Scholar
  6. 6.
    C. Pinheiro, A. Longatto-Filho, J. Azevedo-Silva, M. Casal, F.C. Schmitt, F. Baltazar, Role of monocarboxylate transporters in human cancers: State of the art. J Bioenerg Biomembr 44, 127–139 (2012)PubMedCrossRefGoogle Scholar
  7. 7.
    P. Kirk, M.C. Wilson, C. Heddle, M.H. Brown, A.N. Barclay, A.P. Halestrap, CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 19, 3896–3904 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    P. Fisel, E. Schaeffeler, M. Schwab, Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci 11, 352-364 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    W. Schneiderhan, M. Scheler, K.H. Holzmann, M. Marx, J.E. Gschwend, M. Bucholz, T.M. Gress, T. Seufferlein, G. Adler, F. Oswald, CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58, 1391–1398 (2009)PubMedCrossRefGoogle Scholar
  10. 10.
    J. Hao, H. Chen, M.C. Madigan, P.J. Cozzi, J. Beretov, W. Xiao, W.J. Delprado, P.J. Russell, Y. Li, Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer 103, 1008–1018 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    C. Biswas, Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun 109, 1026–1034 (1982)PubMedCrossRefGoogle Scholar
  12. 12.
    Z.D. Han, X.C. Bi, W.J. Qin, H.C. He, Q.S. Dai, J. Zou, Y.K. Ye, Y.X. Liang, G.H. Zeng, Z.N. Chen, W.D. Zhong, CD147 expression indicates unfavourable prognosis in prostate cancer. Pathol Oncol Res 15, 369–374 (2009)PubMedCrossRefGoogle Scholar
  13. 13.
    S. Zhu, D. Chu, Y. Zhang, X. Wang, L. Gong, X. Han, L. Yao, M. Lan, Y. Li, W. Zhang, EMMPRIN/CD147 expression is associated with disease-free survival of patients with colorectal cancer. Med Oncol 30, 369 (2013)PubMedCrossRefGoogle Scholar
  14. 14.
    K.D. Curtin, I.A. Meinertzhagen, R.J. Wyman, Basigin (EMMPRIN/CD147) interacts with integrin to affect cellular architecture. J Cell Sci 118, 2649–2660 (2005)PubMedCrossRefGoogle Scholar
  15. 15.
    P. Zhao, W. Zhang, S.J. Wang, X.L. Yu, J. Tang, W. Huang, Y. Li, H.Y. Cui, Y.S. Guo, J. Tavernier, S.H. Zhang, J.L. Jiang, Z.N. Chen, HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology 54, 2012–2024 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    C. Biswas, Y. Zhang, R. DeCastro, H. Guo, T. Nakamura, H. Kataoka, K. Nabeshima, The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55, 434–439 (1995)PubMedGoogle Scholar
  17. 17.
    A.P. Halestrap, M.C. Wilson, The monocarboxylate transporter family--role and regulation. IUBMB Life 64, 109–119 (2012)PubMedCrossRefGoogle Scholar
  18. 18.
    P. Huang, S. Chang, X. Jiang, J. Su, C. Dong, X. Liu, Z. Yuan, Z. Zhang, H. Liao, RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis. Int J Clin Exp Pathol 8, 309–318 (2015)PubMedPubMedCentralGoogle Scholar
  19. 19.
    D.M. Voss, R. Spina, D.L. Carter, K.S. Lim, C.J. Jeffery, E.E. Bar, Disruption of the monocarboxylate transporter-4-basigin interaction inhibits the hypoxic response, proliferation, and tumor progression. Sci Rep 7, 4292 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    P. Dana, R. Kariya, K. Vaeteewoottacharn, K. Sawanyawisuth, W. Seubwai, K. Matsuda, S. Okada, S. Wongkham, Upregulation of CD147 promotes metastasis of cholangiocarcinoma by modulating the epithelial-to-mesenchymal transitional process. Oncol Res 25, 1047–1059 (2017)PubMedCrossRefGoogle Scholar
  21. 21.
    U. Thonsri, W. Seubwai, S. Waraasawapati, K. Sawanyawisuth, K. Vaeteewoottacharn, T. Boonmars, U. Cha'on, Overexpression of lactate dehydrogenase a in cholangiocarcinoma is correlated with poor prognosis. Histol Histopathol 32, 503–510 (2017)PubMedGoogle Scholar
  22. 22.
    U. Thamrongwaranggoon, W. Seubwai, C. Phoomak, S. Sangkhamanon, U. Cha'on, T. Boonmars, S. Wongkham, Targeting hexokinase II as a possible therapy for cholangiocarcinoma. Biochem Biophys Res Commun 484, 409–415 (2017)PubMedCrossRefGoogle Scholar
  23. 23.
    S. Obchoei, S.M. Weakley, S. Wongkham, C. Wongkham, K. Sawanyawisuth, Q. Yao, C. Chen, Cyclophilin a enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer 10, 102 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    B. Sripa, S. Leungwattanawanit, T. Nitta, C. Wongkham, V. Bhudhisawasdi, A. Puapairoj, C. Sripa, M. Miwa, Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol 11, 3392–3397 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    G. Matsumoto, J. Namekawa, M. Muta, T. Nakamura, H. Bando, K. Tohyama, M. Toi, K. Umezawa, Targeting of nuclear factor kappaB pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: Antitumor and antiangiogenic potential in vivo. Clin Cancer Res 11, 1287–1293 (2005)PubMedGoogle Scholar
  26. 26.
    Y. Naito, K. Hino, H. Bono, K. Ui-Tei, CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123 (2015)PubMedCrossRefGoogle Scholar
  27. 27.
    L.S. Silva, L.G. Goncalves, F. Silva, G. Domingues, V. Maximo, J. Ferreira, E.W. Lam, S. Dias, A. Felix, J. Serpa, STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment. Tumour Biol 37, 5385–5395 (2016)PubMedCrossRefGoogle Scholar
  28. 28.
    A. Borthakur, S. Saksena, R.K. Gill, W.A. Alrefai, K. Ramaswamy, P.K. Dudeja, Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF-kappaB pathway. J Cell Biochem 103, 1452–1463 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Z. Tan, N. Xie, S. Banerjee, H. Cui, M. Fu, V.J. Thannickal, G. Liu, The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem 290, 46–55 (2015)PubMedCrossRefGoogle Scholar
  30. 30.
    W. Seubwai, C. Wongkham, A. Puapairoj, N. Khuntikeo, A. Pugkhem, C. Hahnvajanawong, J. Chaiyagool, K. Umezawa, S. Okada, S. Wongkham, Aberrant expression of NF-kappaB in liver fluke associated cholangiocarcinoma: Implications for targeted therapy. PLoS One 9, e106056 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    M.G. Thompson, M. Larson, A. Vidrine, K. Barrios, F. Navarro, K. Meyers, P. Simms, K. Prajapati, L. Chitsike, L.M. Hellman, B.M. Baker, S.K. Watkins, FOXO3-NF-kappaB RelA protein complexes reduce Proinflammatory cell signaling and function. J Immunol 195, 5637–5647 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    C.Y. Sasaki, T.J. Barberi, P. Ghosh, D.L. Longo, Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem 280, 34538–34547 (2005)PubMedCrossRefGoogle Scholar
  33. 33.
    G. Tzivion, M. Dobson, G. Ramakrishnan, FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813, 1938–1945 (2011)PubMedCrossRefGoogle Scholar
  34. 34.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)CrossRefGoogle Scholar
  35. 35.
    H. Izumi, M. Takahashi, H. Uramoto, Y. Nakayama, T. Oyama, K.Y. Wang, Y. Sasaguri, S. Nishizawa, K. Kohno, Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci 102, 1007–1013 (2011)PubMedCrossRefGoogle Scholar
  36. 36.
    S.C. Kong, A. Nohr-Nielsen, K. Zeeberg, S.J. Reshkin, E.K. Hoffmann, I. Novak, S.F. Pedersen, Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas 45, 1036–1047 (2016)PubMedCrossRefGoogle Scholar
  37. 37.
    V. Miranda-Goncalves, M. Honavar, C. Pinheiro, O. Martinho, M.M. Pires, C. Pinheiro, M. Cordeiro, G. Bebiano, P. Costa, I. Palmeirim, R.M. Reis, F. Baltazar, Monocarboxylate transporters (MCTs) in gliomas: Expression and exploitation as therapeutic targets. Neuro-Oncology 15, 172–188 (2013)PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Zhang, B. Gan, D. Liu, J.H. Paik, FoxO family members in cancer. Cancer Biol Ther 12, 253–259 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    N. Tanaka, M. Zhao, L. Tang, A.A. Patel, Q. Xi, H.T. Van, H. Takahashi, A.A. Osman, J. Zhang, J. Wang, J.N. Myers, G. Zhou, Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene 37, 1279–1292 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    E.L. Greer, A. Brunet, FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    D. Ni, X. Ma, H.Z. Li, Y. Gao, X.T. Li, Y. Zhang, Q. Ai, P. Zhang, E.L. Song, Q.B. Huang, Y. Fan, X. Zhang, Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res 20, 1779–1790 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    A. Brunet, A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    S. Yothaisong, H. Dokduang, A. Techasen, N. Namwat, P. Yongvanit, V. Bhudhisawasdi, A. Puapairoj, G.J. Riggins, W. Loilome, Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 34, 3637–3648 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Luron, D. Saliba, K. Blazek, A. Lanfrancotti, I.A. Udalova, FOXO3 as a new IKK-epsilon-controlled check-point of regulation of IFN-beta expression. Eur J Immunol 42, 1030–1037 (2012)PubMedCrossRefGoogle Scholar
  45. 45.
    Z. Wang, T. Yu, P. Huang, Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 14, 4931–4941 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    E.E. Santo, P. Stroeken, P.V. Sluis, J. Koster, R. Versteeg, E.M. Westerhout, FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res 73, 2189–2198 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    H. Jo, S. Mondal, D. Tan, E. Nagata, S. Takizawa, A.K. Sharma, Q. Hou, K. Shanmugasundaram, A. Prasad, J.K. Tung, A.O. Tejeda, H. Man, A.C. Rigby, H.R. Luo, Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A 109, 10581–10586 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    M. Tang, Y. Zhao, N. Liu, E. Chen, Z. Quan, X. Wu, C. Luo, Overexpression of HepaCAM inhibits bladder cancer cell proliferation and viability through the AKT/FoxO pathway. J Cancer Res Clin Oncol 143, 793–805 (2017)PubMedCrossRefGoogle Scholar
  49. 49.
    D. Xu, M.E. Hemler, Metabolic activation-related CD147-CD98 complex. Mol Cell Proteomics 4, 1061–1071 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    F. Fei, X. Li, L. Xu, D. Li, Z. Zhang, X. Guo, H. Yang, Z. Chen, J. Xing, CD147-CD98hc complex contributes to poor prognosis of non-small cell lung cancer patients through promoting cell proliferation via the PI3K/Akt signaling pathway. Ann Surg Oncol 21, 4359–4368 (2014)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Paweena Dana
    • 1
    • 2
    • 3
  • Saowaluk Saisomboon
    • 1
    • 2
  • Ryusho Kariya
    • 3
  • Seiji Okada
    • 3
  • Sumalee Obchoei
    • 4
  • Kanlayanee Sawanyawisuth
    • 1
    • 2
  • Chaisiri Wongkham
    • 1
    • 2
  • Chawalit Pairojkul
    • 2
    • 5
  • Sopit Wongkham
    • 1
    • 2
    • 3
  • Kulthida Vaeteewoottacharn
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  2. 2.Cholangiocarcinoma Research InstituteKhon Kaen UniversityKhon KaenThailand
  3. 3.Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
  4. 4.Department of Biochemistry, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  5. 5.Department of Pathology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand

Personalised recommendations