Advertisement

Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells

  • Peichen Zhang
  • Lingyan Shi
  • Tingting Zhang
  • Lin Hong
  • Wei He
  • Peihai Cao
  • Xin Shen
  • Peisen Zheng
  • Yiqun XiaEmail author
  • Peng ZouEmail author
Original Article
  • 78 Downloads

Abstract

Purpose

Oxaliplatin is one of the most commonly used chemotherapeutic agents in the treatment of various cancers, including gastric cancer. It has, however, a narrow therapeutic index due to its toxicity and the occurrence of drug resistance. Therefore, there is a pressing need to develop novel therapies to potentiate the efficacy and reduce the toxicity of oxaliplatin. Piperlongumine (PL), an alkaloid isolated from Piper longum L., has recently been identified as a potent agent against cancer cells in vitro and in vivo. In the present study, we investigated whether PL can potentiate the antitumor effect of oxaliplatin in gastric cancer cells.

Methods

Cellular apoptosis and ROS levels were analyzed by flow cytometry. Thioredoxin reductase 1 (TrxR1) activity in gastric cancer cells or tumor tissues was determined using an endpoint insulin reduction assay. Western blotting was used to analyze the expression levels of the indicated proteins. Nude mice xenograft models were used to test the effects of PL and oxaliplatin combinations on gastric cancer cell growth in vivo.

Results

We found that PL significantly enhanced oxaliplatin-induced growth inhibition in both gastric and colon cancer cells. Moreover, we found that PL potentiated the antitumor effect of oxaliplatin by inhibiting TrxR1 activity. PL combined with oxaliplatin markedly suppressed the activity of TrxR1, resulting in the accumulation of ROS and, thereby, DNA damage induction and p38 and JNK signaling pathway activation. Pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly abrogated the combined treatment-induced ROS generation, DNA damage and apoptosis. Importantly, we found that activation of the p38 and JNK signaling pathways prompted by PL and oxaliplatin was also reversed by NAC pretreatment. In vivo, we found that PL combined with oxaliplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, we found that PL attenuated body weight loss evoked by oxaliplatin treatment.

Conclusions

Our data support a synergistic effect of PL and oxaliplatin and suggest that application of its combination may be more effective for the treatment of gastric cancer than oxaliplatin alone.

Keywords

Gastric cancer Thioredoxin reductase 1 Reactive oxygen species Piperlongumine Oxaliplatin 

Abbreviations

PL

Piperlongumine

ROS

Reactive oxygen species

TrxR1

Thioredoxin reductase 1

NAC

N-acetyl-L-cysteine

JNK

c-Jun N-terminal kinase

p38

p38 mitogen-activated protein kinase.

Notes

Author contributions

Peng Zou and Yiqun Xia designed the study, supervised the project and wrote the manuscript. Peichen Zhang, Lingyan Shi and Tingting Zhang designed and performed most of the experiments. Lin Hong carried out the immunofluorescence experiments. Wei He, Peihai Cao, Xin Shen and Peisen Zheng collected and analyzed the data. All authors were involved in the final version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (81603153 and 81503107) and the Zhejiang Provincial Natural Science Foundation of China (LY16H310011).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The experimental protocol was established according to the Guide for the Care and Use of Laboratory Animals, and was approved by the Institutional Animal Care and Use Committee of Wenzhou Medical University.

Supplementary material

13402_2019_471_MOESM1_ESM.doc (1.5 mb)
ESM 1 (DOC 1490 kb)

References

  1. 1.
    K. Shitara, K. Chin, T. Yoshikawa, H. Katai, M. Terashima, S. Ito, M. Hirao, K. Yoshida, E. Oki, M. Sasako, Y. Emi, T. Tsujinaka, Phase II study of adjuvant chemotherapy of S-1 plus oxaliplatin for patients with stage III gastric cancer after D2 gastrectomy. Gastric Cancer 20, 175–181 (2017).  https://doi.org/10.1007/s10120-015-0581-1 CrossRefGoogle Scholar
  2. 2.
    S.H. Noh, S.R. Park, H.K. Yang, H.C. Chung, I.J. Chung, S.W. Kim, H.H. Kim, J.H. Choi, H.K. Kim, W. Yu, J.I. Lee, D.B. Shin, J. Ji, J.S. Chen, Y. Lim, S. Ha, Y.J. Bang, Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 15, 1389–1396 (2014).  https://doi.org/10.1016/S1470-2045(14)70473-5 CrossRefGoogle Scholar
  3. 3.
    E. Van Cutsem, X. Sagaert, B. Topal, K. Haustermans, H. Prenen, Gastric cancer. Lancet 388, 2654–2664 (2016).  https://doi.org/10.1016/S0140-6736(16)30354-3 CrossRefGoogle Scholar
  4. 4.
    E.C. Smyth, M. Verheij, W. Allum, D. Cunningham, A. Cervantes, D. Arnold, Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27, v38–v49 (2016).  https://doi.org/10.1093/annonc/mdw350 CrossRefGoogle Scholar
  5. 5.
    Y.J. Bang, Y.W. Kim, H.K. Yang, H.C. Chung, Y.K. Park, K.H. Lee, K.W. Lee, Y.H. Kim, S.I. Noh, J.Y. Cho, Y.J. Mok, J. Ji, T.S. Yeh, P. Button, F. Sirzen, S.H. Noh, Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet 379, 315–321 (2012).  https://doi.org/10.1016/S0140-6736(11)61873-4 CrossRefGoogle Scholar
  6. 6.
    E. Gamelin, L. Gamelin, L. Bossi, S. Quasthoff, Clinical aspects and molecular basis of oxaliplatin neurotoxicity: Current management and development of preventive measures. Sem. Oncol. 29, 21–33 (2002).  https://doi.org/10.1053/sonc.2002.35525 CrossRefGoogle Scholar
  7. 7.
    M. Cebula, E.E. Schmidt, E.S. Arner, TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23, 823–853 (2015).  https://doi.org/10.1089/ars.2015.6378 CrossRefGoogle Scholar
  8. 8.
    H. Esen, F. Erdi, B. Kaya, B. Feyzioglu, F. Keskin, L.S. Demir, Tissue thioredoxin reductase-1 expression in astrocytomas of different grades. J. Neuro-Oncol. 121, 451–458 (2015).  https://doi.org/10.1007/s11060-014-1661-5 CrossRefGoogle Scholar
  9. 9.
    W. Zhang, X. Zheng, X. Wang, Oxidative stress measured by thioredoxin reductase level as potential biomarker for prostate cancer. Am. J. Cancer Res. 5, 2788–2798 (2015)Google Scholar
  10. 10.
    W.C. Stafford, X. Peng, M.H. Olofsson, X. Zhang, D.K. Luci, L. Lu, Q. Cheng, L. Tresaugues, T.S. Dexheimer, N.P. Coussens, M. Augsten, H.M. Ahlzen, O. Orwar, A. Ostman, S. Stone-Elander, D.J. Maloney, A. Jadhav, A. Simeonov, S. Linder and E.S.J. Arner, Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Science Transl. Med. 10, (2018)  https://doi.org/10.1126/scitranslmed.aaf7444
  11. 11.
    X. Zheng, W. Ma, R. Sun, H. Yin, F. Lin, Y. Liu, W. Xu, H. Zeng, Butaselen prevents hepatocarcinogenesis and progression through inhibiting thioredoxin reductase activity. Redox Biol. 14, 237–249 (2018).  https://doi.org/10.1016/j.redox.2017.09.014 CrossRefGoogle Scholar
  12. 12.
    P.V. Raninga, G. Di Trapani, S. Vuckovic, K.F. Tonissen, TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF-small ka, cyrillicbeta inhibition. Cell Cycle 15, 559–572 (2016).  https://doi.org/10.1080/15384101.2015.1136038 CrossRefGoogle Scholar
  13. 13.
    C. Fan, W. Zheng, X. Fu, X. Li, Y.S. Wong, T. Chen, Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis 5, e1191 (2014).  https://doi.org/10.1038/cddis.2014.132 CrossRefGoogle Scholar
  14. 14.
    W. Cai, L. Zhang, Y. Song, B. Wang, B. Zhang, X. Cui, G. Hu, Y. Liu, J. Wu, J. Fang, Small molecule inhibitors of mammalian thioredoxin reductase. Free Rad. Biol. Med. 52, 257–265 (2012).  https://doi.org/10.1016/j.freeradbiomed.2011.10.447 CrossRefGoogle Scholar
  15. 15.
    W. Fiskus, N. Saba, M. Shen, M. Ghias, J. Liu, S.D. Gupta, L. Chauhan, R. Rao, S. Gunewardena, K. Schorno, C.P. Austin, K. Maddocks, J. Byrd, A. Melnick, P. Huang, A. Wiestner, K.N. Bhalla, Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 74, 2520–2532 (2014).  https://doi.org/10.1158/0008-5472.CAN-13-2033 CrossRefGoogle Scholar
  16. 16.
    Y. Liu, D. Duan, J. Yao, B. Zhang, S. Peng, H. Ma, Y. Song, J. Fang, Dithiaarsanes induce oxidative stress-mediated apoptosis in HL-60 cells by selectively targeting thioredoxin reductase. J. Med. Chem. 57, 5203–5211 (2014).  https://doi.org/10.1021/jm500221p
  17. 17.
    W. Hang, Z.X. Yin, G. Liu, Q. Zeng, X.F. Shen, Q.H. Sun, D.D. Li, Y.P. Jian, Y.H. Zhang, Y.S. Wang, C.S. Quan, R.X. Zhao, Y.L. Li, Z.X. Xu, Piperlongumine and p53-reactivator APR-246 selectively induce cell death in HNSCC by targeting GSTP1. Oncogene 37, 3384–3398 (2018).  https://doi.org/10.1038/s41388-017-0110-2 CrossRefGoogle Scholar
  18. 18.
    T.H. Kim, J. Song, S.H. Kim, A.K. Parikh, X. Mo, K. Palanichamy, B. Kaur, J. Yu, S.O. Yoon, I. Nakano, C.H. Kwon, Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro-Oncol. 16, 1354–1364 (2014).  https://doi.org/10.1093/neuonc/nou088 CrossRefGoogle Scholar
  19. 19.
    S. Thongsom, W. Suginta, K.J. Lee, H. Choe, C. Talabnin, Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway. Apoptosis 22, 1473–1484 (2017).  https://doi.org/10.1007/s10495-017-1422-y CrossRefGoogle Scholar
  20. 20.
    K. Karki, E. Hedrick, R. Kasiappan, U.H. Jin, S. Safe, Piperlongumine induces reactive oxygen species (ROS)-dependent downregulation of specificity protein transcription factors. Cancer Prev. Res. 10, 467–477 (2017).  https://doi.org/10.1158/1940-6207.CAPR-17-0053 CrossRefGoogle Scholar
  21. 21.
    H. Wang, H. Jiang, C. Corbet, S. de Mey, K. Law, T. Gevaert, O. Feron, M. De Ridder, Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett. 450, 42–52 (2019).  https://doi.org/10.1016/j.canlet.2019.02.034 CrossRefGoogle Scholar
  22. 22.
    D. Chen, Y. Ma, P. Li, M. Liu, Y. Fang, J. Zhang, B. Zhang, Y. Hui and Y. Yin, Piperlongumine induces apoptosis and synergizes with doxorubicin by inhibiting the JAK2-STAT3 pathway in triple-negative breast cancer. Molecules 24, (2019)  https://doi.org/10.3390/molecules24122338
  23. 23.
    J. Mohammad, H. Dhillon, S. Chikara, S. Mamidi, A. Sreedasyam, K. Chittem, M. Orr, J.C. Wilkinson, K.M. Reindl, Piperlongumine potentiates the effects of gemcitabine in in vitro and in vivo human pancreatic cancer models. Oncotarget 9, 10457–10469 (2018).  https://doi.org/10.18632/oncotarget.23623 CrossRefGoogle Scholar
  24. 24.
    P. Zou, Y. Xia, J. Ji, W. Chen, J. Zhang, X. Chen, V. Rajamanickam, G. Chen, Z. Wang, L. Chen, Y. Wang, S. Yang, G. Liang, Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer. Cancer Lett. 375, 114–126 (2016).  https://doi.org/10.1016/j.canlet.2016.02.058 CrossRefGoogle Scholar
  25. 25.
    T.C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010).  https://doi.org/10.1158/0008-5472.CAN-09-1947 CrossRefGoogle Scholar
  26. 26.
    S.L. Locatelli, L. Cleris, G.G. Stirparo, S. Tartari, E. Saba, M. Pierdominici, W. Malorni, A. Carbone, A. Anichini, C. Carlo-Stella, BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia 28, 1861–1871 (2014).  https://doi.org/10.1038/leu.2014.81 CrossRefGoogle Scholar
  27. 27.
    X. Wang, Q. Guo, L. Tao, L. Zhao, Y. Chen, T. An, Z. Chen, R. Fu, E platinum, a newly synthesized platinum compound, induces apoptosis through ROS-triggered ER stress in gastric carcinoma cells. Mol. Carc. 56, 218–231 (2017).  https://doi.org/10.1002/mc.22486 CrossRefGoogle Scholar
  28. 28.
    Z.H. Tang, W.X. Cao, M.X. Su, X. Chen, J.J. Lu, Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells. Toxicol. Appl. Pharmacol. 321, 18–26 (2017).  https://doi.org/10.1016/j.taap.2017.02.017 CrossRefGoogle Scholar
  29. 29.
    N. Liu, K.S. Wang, M. Qi, Y.J. Zhou, G.Y. Zeng, J. Tao, J.D. Zhou, J.L. Zhang, X. Chen, C. Peng, Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels. J. Exp. Clin. Cancer Res. 37, 269 (2018).  https://doi.org/10.1186/s13046-018-0897-x CrossRefGoogle Scholar
  30. 30.
    M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).  https://doi.org/10.1016/j.cub.2014.03.034 CrossRefGoogle Scholar
  31. 31.
    A. Zafar, S. Singh, I. Naseem, Cu(II)-coumestrol interaction leads to ROS-mediated DNA damage and cell death: A putative mechanism for anticancer activity. J. Nutrit. Biochem. 33, 15–27 (2016).  https://doi.org/10.1016/j.jnutbio.2016.03.003 CrossRefGoogle Scholar
  32. 32.
    C.C. Hsieh, J. Papaconstantinou, Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 20, 259–268 (2006).  https://doi.org/10.1096/fj.05-4376com
  33. 33.
    M.D. Mantzaris, S. Bellou, V. Skiada, N. Kitsati, T. Fotsis, D. Galaris, Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radic. Biol. Med. 97, 454–465 (2016).  https://doi.org/10.1016/j.freeradbiomed.2016.07.002 CrossRefGoogle Scholar
  34. 34.
    D. Duan, J. Zhang, J. Yao, Y. Liu, J. Fang, Targeting thioredoxin reductase by parthenolide contributes to inducing apoptosis of HeLa cells. J. Biol. Chem. 291, 10021–10031 (2016).  https://doi.org/10.1074/jbc.M115.700591 CrossRefGoogle Scholar
  35. 35.
    D. Duan, B. Zhang, J. Yao, Y. Liu, J. Fang, Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic. Biol. Med. 70, 182–193 (2014).  https://doi.org/10.1016/j.freeradbiomed.2014.02.016 CrossRefGoogle Scholar
  36. 36.
    H.M. Abdallah, A.M. Al-Abd, R.S. El-Dine, A.M. El-Halawany, P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J. Adv. Res. 6, 45–62 (2015).  https://doi.org/10.1016/j.jare.2014.11.008 CrossRefGoogle Scholar
  37. 37.
    A. Bishayee, G. Sethi, Bioactive natural products in cancer prevention and therapy: Progress and promise. Sem. Cancer Biol. 40-41, 1–3 (2016).  https://doi.org/10.1016/j.semcancer.2016.08.006 CrossRefGoogle Scholar
  38. 38.
    S. Peng, B. Zhang, X. Meng, J. Yao, J. Fang, Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents. J. Med. Chem. 58, 5242–5255 (2015).  https://doi.org/10.1021/acs.jmedchem.5b00410 CrossRefGoogle Scholar
  39. 39.
    D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Rev. Drug Discov. 8, 579–591 (2009).  https://doi.org/10.1038/nrd2803 CrossRefGoogle Scholar
  40. 40.
    C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nature Rev. Drug Discov. 12, 931–947 (2013).  https://doi.org/10.1038/nrd4002 CrossRefGoogle Scholar
  41. 41.
    Y. Yang, Y. Zhang, L. Wang, S. Lee, Levistolide A induces apoptosis via ROS-mediated ER stress pathway in colon cancer cells. Cell. Physiol. Biochem. 42, 929–938 (2017).  https://doi.org/10.1159/000478647 CrossRefGoogle Scholar
  42. 42.
    Y. Jung, S.J. Lippard, Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 107, 1387–1407 (2007).  https://doi.org/10.1021/cr068207j CrossRefGoogle Scholar
  43. 43.
    K. Li, Q. Zheng, X. Chen, Y. Wang, D. Wang, J. Wang, Isobavachalcone induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in human prostate cancer PC-3 cells. Oxid. Med. Cell. Longevity 2018, 1915828–1915813 (2018).  https://doi.org/10.1155/2018/1915828 Google Scholar
  44. 44.
    A.B. Witte, K. Anestal, E. Jerremalm, H. Ehrsson, E.S. Arner, Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic. Biol. Med. 39, 696–703 (2005).  https://doi.org/10.1016/j.freeradbiomed.2005.04.025 CrossRefGoogle Scholar
  45. 45.
    K. Piska, P. Koczurkiewicz, D. Wnuk, E. Karnas, A. Bucki, K. Wojcik-Pszczola, M. Jamrozik, M. Michalik, M. Kolaczkowski, E. Pekala, Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells - the involvement of carbonyl reductase 1 inhibition. Chem. Biol. Interact. 300, 40–48 (2019).  https://doi.org/10.1016/j.cbi.2019.01.003 CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  1. 1.Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityZhejiangChina
  2. 2.Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityZhejiangChina
  3. 3.Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityZhejiangChina

Personalised recommendations