Advertisement

CD47: role in the immune system and application to cancer therapy

  • Seyed Mohammad Gheibi Hayat
  • Vanessa Bianconi
  • Matteo Pirro
  • Mahmoud R. Jaafari
  • Mahdi Hatamipour
  • Amirhossein SahebkarEmail author
Review

Abstract

Background

CD47 is a widely expressed cellular receptor well known for its immunoregulatory functions. By interacting with its ligands, including thrombospondin-1 (TSP-1), signal regulatory protein α (SIRPα), integrins, and SH2-domain bearing protein tyrosine phosphatase substrate-1 (SHPS-1), it modulates cellular phagocytosis by macrophages, transmigration of neutrophils and activation of dendritic cells, T cells and B cells. Ample studies have shown that various types of cancer express high levels of CD47 to escape from the immune system. Based on this observation, CD47 is currently considered as a prominent target in cancer therapy.

Conclusions

Here, we review the role of CD47 in the maintenance of immune system homeostasis. We also depict three emerging CD47-targeting strategies for cancer therapy, including the use of mimicry peptides, antibodies, and gene silencing strategies. Among these approaches, the most advanced one is the use of anti-CD47 antibodies, which enhances cancer cell phagocytosis via inhibition of the CD47-SIRPα axis. These antibodies can also achieve higher anti-cancer efficacies when combined with chemotherapy and immunotherapy and hold promise for improving the survival of patients with cancer.

Keywords

CD47 Tumor Macrophage Efferocytosis 

Notes

Acknowledgments

This project was supported by a grant from Cancer Research Center of the Cancer Institute of Iran (Sohrabi Cancer Charity, Grant No: 37652-202-01-97). This project was also financially supported by grant No. 961204 of the Biotechnology Development Council of the Islamic Republic of Iran.

Compliance with ethical standards

Conflict of interests

None.

References

  1. 1.
    A. Mushegian, Refining structural and functional predictions for secretasome components by comparative sequence analysis. Proteins 47, 69–74 (2002).  https://doi.org/10.1002/prot.10073 CrossRefPubMedGoogle Scholar
  2. 2.
    M.I. Reinhold, F.P. Lindberg, D. Plas, S. Reynolds, M.G. Peters, E.J. Brown, In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J. Cell Sci. 108, 3419–3425 (1995)PubMedGoogle Scholar
  3. 3.
    E.J. Brown, W.A. Frazier, Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).  https://doi.org/10.1016/S0962-8924(00)01906-1 CrossRefPubMedGoogle Scholar
  4. 4.
    P.A. Oldenborg, A. Zheleznyak, Y.F. Fang, C.F. Lagenaur, H.D. Gresham, F.P. Lindberg, Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).  https://doi.org/10.1126/science.288.5473.2051 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    X. Zhang, J. Fan, D. Ju, Insights into CD47/SIRPα axis-targeting tumor immunotherapy. Antib. Ther. 1, 27–32 (2018).  https://doi.org/10.1093/abt/tby006
  6. 6.
    S. Jaiswal, C.H. Jamieson, W.W. Pang, C.Y. Park, M.P. Chao, R. Majeti, D. Traver, N. van Rooijen, I.L. Weissman, CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).  https://doi.org/10.1016/j.cell.2009.05.046 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    S.B. Willingham, J.P. Volkmer, A.J. Gentles, D. Sahoo, P. Dalerba, S.S. Mitra, J. Wang, H. Contreras-Trujillo, R. Martin, J.D. Cohen, P. Lovelace, F.A. Scheeren, M.P. Chao, K. Weiskopf, C. Tang, A.K. Volkmer, T.J. Naik, T.A. Storm, A.R. Mosley, B. Edris, S.M. Schmid, C.K. Sun, M.S. Chua, O. Murillo, P. Rajendran, A.C. Cha, R.K. Chin, D. Kim, M. Adorno, T. Raveh, D. Tseng, S. Jaiswal, P.O. Enger, G.K. Steinberg, G. Li, S.K. So, R. Majeti, G.R. Harsh, M. van de Rijn, N.N. Teng, J.B. Sunwoo, A.A. Alizadeh, M.F. Clarke, I.L. Weissman, The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. U. S. A. 109, 6662–6667 (2012).  https://doi.org/10.1073/pnas.1121623109 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    N. Koning, L. Bo, R.M. Hoek, I. Huitinga, Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann. Neurol. 62, 504–514 (2007).  https://doi.org/10.1002/ana.21220 CrossRefPubMedGoogle Scholar
  9. 9.
    R.A. Rebres, L.E. Vaz, J.M. Green, E.J. Brown, Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J. Biol. Chem. 276, 34607–34616 (2001).  https://doi.org/10.1074/jbc.M106107200 CrossRefPubMedGoogle Scholar
  10. 10.
    B.R. Blazar, F.P. Lindberg, E. Ingulli, A. Panoskaltsis-Mortari, P.A. Oldenborg, K. Iizuka, W.M. Yokoyama, P.A. Taylor, CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J. Exp. Med. 194, 541–549 (2001).  https://doi.org/10.1084/jem.194.4.541 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    W.J. Mawby, C.H. Holmes, D.J. Anstee, F.A. Spring, M.J. Tanner, Isolation and characterization of CD47 glycoprotein: A multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumour marker OA3. Biochem. J. 304, 525–530 (1994).  https://doi.org/10.1042/bj3040525 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    A.G. Gao, F.P. Lindberg, J.M. Dimitry, E.J. Brown, W.A. Frazier, Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J. Cell Biol. 135, 533–544 (1996).  https://doi.org/10.1083/jcb.135.2.533 CrossRefPubMedGoogle Scholar
  13. 13.
    E.N. N'Diaye, E.J. Brown, The ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein function through association with Gbetagamma. J. Cell Biol. 163, 1157–1165 (2003).  https://doi.org/10.1083/jcb.200307155 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    W.A. Frazier, A.G. Gao, J. Dimitry, J. Chung, E.J. Brown, F.P. Lindberg, M.E. Linder, The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi. J. Biol. Chem. 274, 8554–8560 (1999).  https://doi.org/10.1074/jbc.274.13.8554 CrossRefPubMedGoogle Scholar
  15. 15.
    P.P. Manna, W.A. Frazier, The mechanism of CD47-dependent killing of T cells: Heterotrimeric Gi-dependent inhibition of protein kinase A. J. Immunol. 170, 3544–3553 (2003).  https://doi.org/10.4049/jimmunol.170.7.3544 CrossRefPubMedGoogle Scholar
  16. 16.
    J. Chung, A.G. Gao, W.A. Frazier, Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J. Biol. Chem. 272, 14740–14746 (1997).  https://doi.org/10.1074/jbc.272.23.14740 CrossRefPubMedGoogle Scholar
  17. 17.
    J. Chung, X.Q. Wang, F.P. Lindberg, W.A. Frazier, Thrombospondin-1 acts via IAP/CD47 to synergize with collagen in alpha2beta1-mediated platelet activation. Blood 94, 642–648 (1999)PubMedCrossRefGoogle Scholar
  18. 18.
    X.Q. Wang, W.A. Frazier, The thrombospondin receptor CD47 (IAP) modulates and associates with alpha2 beta1 integrin in vascular smooth muscle cells. Mol. Biol. Cell 9, 865–874 (1998).  https://doi.org/10.1091/mbc.9.4.865 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    J.E. Brittain, J. Han, K.I. Ataga, E.P. Orringer, L.V. Parise, Mechanism of CD47-induced α4 β1 integrin activation and adhesion in sickle reticulocytes. J. Biol. Chem. 279, 42393–42402 (2004).  https://doi.org/10.1074/jbc.M407631200 CrossRefPubMedGoogle Scholar
  20. 20.
    H. Yoshida, Y. Tomiyama, J. Ishikawa, K. Oritani, I. Matsumura, M. Shiraga, T. Yokota, Y. Okajima, M. Ogawa, J. Miyagawa, T. Nishiura, Y. Matsuzawa, Integrin-associated protein/CD47 regulates motile activity in human B-cell lines through CDC42. Blood 96, 234–241 (2000)PubMedCrossRefGoogle Scholar
  21. 21.
    J. Koenigsknecht, G. Landreth, Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J. Neurosci. 24, 9838–9846 (2004).  https://doi.org/10.1523/jneurosci.2557-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    M. Orazizadeh, H.S. Lee, B. Groenendijk, S.J. Sadler, M.O. Wright, F.P. Lindberg, D.M. Salter, CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis. Res. Ther. 24, 9838–9846 (2008).  https://doi.org/10.1186/ar2350 CrossRefGoogle Scholar
  23. 23.
    A.G. Gao, W.A. Frazier, Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins. J. Biol. Chem. 269, 29650–29657 (1994)PubMedGoogle Scholar
  24. 24.
    A.G. Gao, F.P. Lindberg, M.B. Finn, S.D. Blystone, E.J. Brown, W.A. Frazier, Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21–24 (1996).  https://doi.org/10.1074/jbc.271.1.21 CrossRefPubMedGoogle Scholar
  25. 25.
    J.S. Isenberg, D.S. Annis, M.L. Pendrak, M. Ptaszynska, W.A. Frazier, D.F. Mosher, D.D. Roberts, Differential interactions of thrombospondin-1, −2, and −4 with CD47 and effects on cGMP signaling and ischemic injury responses. J. Biol. Chem. 284, 1116–1125 (2009).  https://doi.org/10.1074/jbc.M804860200 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    L. Gao, K. Chen, Q. Gao, X. Wang, J. Sun, Y.G. Yang, CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis. Oncotarget 284, 1116–1125 (2017).  https://doi.org/10.18632/oncotarget.9899 CrossRefGoogle Scholar
  27. 27.
    J.S. Isenberg, L.A. Ridnour, J. Dimitry, W.A. Frazier, D.A. Wink, D.D. Roberts, CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J. Biol. Chem. 281, 26069–22680 (2006).  https://doi.org/10.1074/jbc.M605040200 CrossRefPubMedGoogle Scholar
  28. 28.
    J.C. Adams, Thrombospondins: Multifunctional regulators of cell interactions. Ann. Rev. Cell Dev. Biol. 17, 25–51 (2001).  https://doi.org/10.1146/annurev.cellbio.17.1.25
  29. 29.
    S. Adams, L.J. van der Laan, E. Vernon-Wilson, C. Renardel de Lavalette, E.A. Dopp, C.D. Dijkstra, D.L. Simmons, T.K. van den Berg, Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J. Immunol. 161, 1853–1859 (1998)PubMedGoogle Scholar
  30. 30.
    A.N. Barclay, M.H. Brown, The SIRP family of receptors and immune regulation. Nat. Rev. Immunol. 6, 457–464 (2006).  https://doi.org/10.1038/nri1859 CrossRefPubMedGoogle Scholar
  31. 31.
    D. Hatherley, S.C. Graham, J. Turner, K. Harlos, D.I. Stuart, A.N. Barclay, Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol. Cell 31, 266–277 (2008).  https://doi.org/10.1016/j.molcel.2008.05.026 CrossRefPubMedGoogle Scholar
  32. 32.
    Y. Liu, Q. Tong, Y. Zhou, H.W. Lee, J.J. Yang, H.J. Buhring, Y.T. Chen, B. Ha, C.X. Chen, Y. Yang, K. Zen, Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47. J. Mol. Biol. 365, 680–693 (2007).  https://doi.org/10.1016/j.jmb.2006.09.079 CrossRefPubMedGoogle Scholar
  33. 33.
    F.P. Lindberg, D.C. Bullard, T.E. Caver, H.D. Gresham, A.L. Beaudet, E.J. Brown, Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274, 795–798 (1996).  https://doi.org/10.1126/science.274.5288.795 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    A.N. Barclay, T.K. Van den Berg, The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: Structure, function, and therapeutic target. Annu. Rev. Immunol. 32, 25–50 (2014).  https://doi.org/10.1146/annurev-immunol-032713-120142 CrossRefPubMedGoogle Scholar
  35. 35.
    R.K. Tsai, D.E. Discher, Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180, 989–1003 (2008).  https://doi.org/10.1083/jcb.200708043 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    E.M. van Beek, F. Cochrane, A.N. Barclay, T.K. van den Berg, Signal regulatory proteins in the immune system. J. Immunol. 175, 7781–7787 (2005).  https://doi.org/10.4049/jimmunol.175.12.7781 CrossRefPubMedGoogle Scholar
  37. 37.
    B.A. Imhof, B. Engelhardt, M. Vadas, Novel mechanisms of the transendothelial migration of leukocytes. Trends Immunol. 22, 411–414 (2001).  https://doi.org/10.1016/S1471-4906(01)01961-5 CrossRefPubMedGoogle Scholar
  38. 38.
    D. Cooper, F.P. Lindberg, J.R. Gamble, E.J. Brown, M.A. Vadas, Transendothelial migration of neutrophils involves integrin-associated protein (CD47). Proc. Natl. Acad. Sci. U. S. A. 22, 411–414 (1995).  https://doi.org/10.1073/pnas.92.9.3978 CrossRefGoogle Scholar
  39. 39.
    Y. Liu, D. Merlin, S.L. Burst, M. Pochet, J.L. Madara, C.A. Parkos, The role of CD47 in neutrophil transmigration. Increased rate of migration correlates with increased cell surface expression of CD47. J. Biol. Chem. 276, 40156–40166 (2001).  https://doi.org/10.1074/jbc.M104138200 CrossRefPubMedGoogle Scholar
  40. 40.
    S. Herold, W. von Wulffen, M. Steinmueller, S. Pleschka, W.A. Kuziel, M. Mack, M. Srivastava, W. Seeger, U.A. Maus, J. Lohmeyer, Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: Impact of chemokines and adhesion molecules. J. Immunol. 177, 1817–1824 (2006).  https://doi.org/10.4049/jimmunol.177.3.1817 CrossRefPubMedGoogle Scholar
  41. 41.
    V.Q. Van, S. Lesage, S. Bouguermouh, P. Gautier, M. Rubio, M. Levesque, S. Nguyen, L. Galibert, M. Sarfati, Expression of the self-marker CD47 on dendritic cells governs their trafficking to secondary lymphoid organs. EMBO J. 25, 5560–5568 (2006).  https://doi.org/10.1038/sj.emboj.7601415 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    T. Murata, H. Ohnishi, H. Okazawa, Y. Murata, S. Kusakari, Y. Hayashi, M. Miyashita, H. Itoh, P.A. Oldenborg, N. Furuya, T. Matozaki, CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J. Neurosci. 26, 12397–12407 (2006).  https://doi.org/10.1523/jneurosci.3981-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    M. Ticchioni, M. Deckert, F. Mary, G. Bernard, E.J. Brown, A. Bernard, Integrin-associated protein (CD47) is a comitogenic molecule on CD3-activated human T cells. J. Immunol. 158, 677–684 (1997)PubMedGoogle Scholar
  44. 44.
    L. Piccio, W. Vermi, K.S. Boles, A. Fuchs, C.A. Strader, F. Facchetti, M. Cella, M. Colonna, Adhesion of human T cells to antigen-presenting cells through SIRPbeta2-CD47 interaction costimulates T-cell proliferation. Blood 105, 2421–2427 (2005).  https://doi.org/10.1182/blood-2004-07-2823 CrossRefPubMedGoogle Scholar
  45. 45.
    J.J. O'Shea, W.E. Paul, Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).  https://doi.org/10.1126/science.1178334 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    M.N. Avice, M. Rubio, M. Sergerie, G. Delespesse, M. Sarfati, CD47 ligation selectively inhibits the development of human naive T cells into Th1 effectors. J. Immunol. 165, 4624–4631 (2000).  https://doi.org/10.4049/jimmunol.165.8.4624 CrossRefPubMedGoogle Scholar
  47. 47.
    S. Latour, H. Tanaka, C. Demeure, V. Mateo, M. Rubio, E.J. Brown, C. Maliszewski, F.P. Lindberg, A. Oldenborg, A. Ullrich, G. Delespesse, M. Sarfati, Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: Down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167, 2547–2554 (2001).  https://doi.org/10.4049/jimmunol.167.5.2547 CrossRefPubMedGoogle Scholar
  48. 48.
    S. Bouguermouh, V.Q. Van, J. Martel, P. Gautier, M. Rubio, M. Sarfati, CD47 expression on T cell is a self-control negative regulator of type 1 immune response. J. Immunol. 180, 8073–8082 (2008).  https://doi.org/10.4049/jimmunol.180.12.8073 CrossRefPubMedGoogle Scholar
  49. 49.
    P. Grimbert, S. Bouguermouh, N. Baba, T. Nakajima, Z. Allakhverdi, D. Braun, H. Saito, M. Rubio, G. Delespesse, M. Sarfati, Thrombospondin/CD47 interaction: A pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation. J. Immunol. 177, 3534–3541 (2006).  https://doi.org/10.4049/jimmunol.177.6.3534 CrossRefPubMedGoogle Scholar
  50. 50.
    J.M. Baumgartner, B.E. Palmer, A. Banerjee, M.D. McCarter, Role of melanoma secreted thrombospondin-1 on induction of immunosuppressive regulatory T cells through CD47. J. Cancer Mol. 4, 145–152 (2008).  https://doi.org/10.29685/JCM.200812.0003 CrossRefGoogle Scholar
  51. 51.
    D. Ferrari, S. Gorini, G. Callegari, A. la Sala, Shaping immune responses through the activation of dendritic cells–P2 receptors. Purinergic Signal 3, 99–107 (2007).  https://doi.org/10.1007/s11302-006-9024-0 CrossRefPubMedGoogle Scholar
  52. 52.
    C.E. Demeure, H. Tanaka, V. Mateo, M. Rubio, G. Delespesse, M. Sarfati, CD47 engagement inhibits cytokine production and maturation of human dendritic cells. J. Immunol. 165, 2193–2199 (2000).  https://doi.org/10.4049/jimmunol.164.4.2193 CrossRefGoogle Scholar
  53. 53.
    V. Doyen, M. Rubio, D. Braun, T. Nakajima, J. Abe, H. Saito, G. Delespesse, M. Sarfati, Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J. Exp. Med. 198, 1277–1283 (2003).  https://doi.org/10.1084/jem.20030705 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    P. Jiang, C.F. Lagenaur, V. Narayanan, Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274, 559–562 (1999).  https://doi.org/10.1074/jbc.274.2.559 CrossRefPubMedGoogle Scholar
  55. 55.
    H. Yoshida, Y. Tomiyama, K. Oritani, Y. Murayama, J. Ishikawa, H. Kato, J. Miyagawa Ji, N. Honma, T. Nishiura, Y. Matsuzawa, Interaction between Src homology 2 domain bearing protein tyrosine phosphatase substrate-1 and CD47 mediates the adhesion of human B lymphocytes to nonactivated endothelial cells. J. Immunol. 168, 3213–3220 (2002).  https://doi.org/10.4049/jimmunol.168.7.3213 CrossRefPubMedGoogle Scholar
  56. 56.
    M.J. Kim, J.C. Lee, J.J. Lee, S. Kim, S.G. Lee, S.W. Park, M.W. Sung, D.S. Heo, Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol. 29, 28–34 (2008).  https://doi.org/10.1159/000132568 CrossRefPubMedGoogle Scholar
  57. 57.
    Annual meeting of the American Academy of Otolaryngology-Head and Neck Surgery Foundation, Inc. San Diego, California, September 9–13, 1990. Abstracts. Otolaryngol. Head Neck Surg. 103, 179–336 (1990)Google Scholar
  58. 58.
    M.P. Chao, A.A. Alizadeh, C. Tang, J.H. Myklebust, B. Varghese, S. Gill, M. Jan, A.C. Cha, C.K. Chan, B.T. Tan, C.Y. Park, F. Zhao, H.E. Kohrt, R. Malumbres, J. Briones, R.D. Gascoyne, I.S. Lossos, R. Levy, I.L. Weissman, R. Majeti, Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).  https://doi.org/10.1016/j.cell.2010.07.044 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    M.P. Chao, I.L. Weissman, R. Majeti, The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012).  https://doi.org/10.1016/j.coi.2012.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    P.P. Manna, W.A. Frazier, CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res. 64, 1026–1036 (2004).  https://doi.org/10.1158/0008-5472.CAN-03-1708 CrossRefPubMedGoogle Scholar
  61. 61.
    V. Mateo, E.J. Brown, G. Biron, M. Rubio, A. Fischer, F.L. Deist, M. Sarfati, Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: Link between phosphatidylserine exposure and cytoskeleton organization. Blood 100, 2882–2890 (2002).  https://doi.org/10.1182/blood-2001-12-0217 CrossRefPubMedGoogle Scholar
  62. 62.
    M. Sagawa, T. Shimizu, N. Fukushima, Y. Kinoshita, I. Ohizumi, S. Uno, Y. Kikuchi, Y. Ikeda, H. Yamada-Okabe, M. Kizaki, A new disulfide-linked dimer of a single-chain antibody fragment against human CD47 induces apoptosis in lymphoid malignant cells via the hypoxia inducible factor-1alpha pathway. Cancer Sci. 102, 1208–1215 (2011).  https://doi.org/10.1111/j.1349-7006.2011.01925.x CrossRefPubMedGoogle Scholar
  63. 63.
    R. Majeti, M.P. Chao, A.A. Alizadeh, W.W. Pang, S. Jaiswal, K.D. Gibbs Jr., N. van Rooijen, I.L. Weissman, CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).  https://doi.org/10.1016/j.cell.2009.05.045 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    T. Matozaki, Y. Murata, H. Okazawa, H. Ohnishi, Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol. 19, 72–80 (2009).  https://doi.org/10.1016/j.tcb.2008.12.001 CrossRefPubMedGoogle Scholar
  65. 65.
    H.O. Barazi, Z. Li, J.A. Cashel, H.C. Krutzsch, D.S. Annis, D.F. Mosher, D.D. Roberts, Regulation of integrin function by CD47 ligands. Differential effects on alpha vbeta 3 and alpha 4beta1 integrin-mediated adhesion. J. Biol. Chem. 277, 42859–42866 (2002).  https://doi.org/10.1074/jbc.M206849200 CrossRefPubMedGoogle Scholar
  66. 66.
    D. Tulasne, B.A. Judd, M. Johansen, N. Asazuma, D. Best, E.J. Brown, M. Kahn, G.A. Koretzky, S.P. Watson, C-terminal peptide of thrombospondin-1 induces platelet aggregation through the Fc receptor gamma-chain-associated signaling pathway and by agglutination. Blood 98, 3346–3352 (2001).  https://doi.org/10.1182/blood.v98.12.3346 CrossRefPubMedGoogle Scholar
  67. 67.
    U. Johansson, M. Londei, Ligation of CD47 during monocyte differentiation into dendritic cells results in reduced capacity for interleukin-12 production. Scand. J. Immunol. 59, 50–57 (2004).  https://doi.org/10.1111/j.0300-9475.2004.01354.x CrossRefPubMedGoogle Scholar
  68. 68.
    Y. Liu, M.B. O'Connor, K.J. Mandell, K. Zen, A. Ullrich, H.J. Buhring, C.A. Parkos, Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein alpha. J. Immunol. 172, 2578–2585 (2004).  https://doi.org/10.4049/jimmunol.172.4.2578 CrossRefPubMedGoogle Scholar
  69. 69.
    P.S. Petrova, N.N. Viller, M. Wong, X. Pang, G.H. Lin, K. Dodge, V. Chai, H. Chen, V. Lee, V. House, N.T. Vigo, D. Jin, T. Mutukura, M. Charbonneau, T. Truong, S. Viau, L.D. Johnson, E. Linderoth, E.L. Sievers, S. Maleki Vareki, R. Figueredo, M. Pampillo, J. Koropatnick, S. Trudel, N. Mbong, L. Jin, J.C. Wang, R.A. Uger, TTI-621 (SIRPalphaFc): A CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin. Cancer Res. 23, 1068–1079 (2017).  https://doi.org/10.1158/1078-0432.Ccr-16-1700 CrossRefPubMedGoogle Scholar
  70. 70.
    G.H. Lin, N.N. Viller, M. Charbonneau, L. Brinen, T. Mutukura, K. Dodge, S. Helke, V. Chai, V. House, V. Lee, TTI-622 (SIRPα-IgG4 Fc), a CD47-blocking innate immune checkpoint inhibitor, suppresses tumor growth and demonstrates enhanced efficacy in combination with anti-tumor antibodies in both hematological and solid tumor models. Cancer Res. 40, 50 (2018).  https://doi.org/10.1158/1538-7445.AM2018-2709 CrossRefGoogle Scholar
  71. 71.
    M.P. Chao, A.A. Alizadeh, C. Tang, M. Jan, R. Weissman-Tsukamoto, F. Zhao, C.Y. Park, I.L. Weissman, R. Majeti, Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 71, 1374–1384 (2011).  https://doi.org/10.1158/0008-5472.can-10-2238 CrossRefPubMedGoogle Scholar
  72. 72.
    S.M. Gheibi Hayat, V. Bianconi, M. Pirro, A. Sahebkar, Efferocytosis: Molecular mechanisms and pathophysiological perspectives. Immunol. Cell Biol. 97, 124–133 (2018).  https://doi.org/10.1111/imcb.12206 CrossRefPubMedGoogle Scholar
  73. 73.
    A. Tajbakhsh, S.M. Gheibi Hayat, A.E. Butler, A. Sahebkar, Effect of soluble cleavage products of important receptors/ligands on efferocytosis: Their role in inflammatory, autoimmune and cardiovascular disease Ageing Res. Rev. 50, 43–57 (2019)Google Scholar
  74. 74.
    S.M. Gheibi Hayat, V. Bianconi, M. Pirro, A. Sahebkar, Efferocytosis: molecular mechanisms and pathophysiological perspectives Immunology and Cell Biol. 97 (2), 124–133 (2019).Google Scholar
  75. 75.
    S.J. Gardai, K.A. McPhillips, S.C. Frasch, W.J. Janssen, A. Starefeldt, J.E. Murphy-Ullrich, D.L. Bratton, P.A. Oldenborg, M. Michalak, P.M. Henson, Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).  https://doi.org/10.1016/j.cell.2005.08.032 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    E.C. Piccione, S. Juarez, J. Liu, S. Tseng, C.E. Ryan, C. Narayanan, L. Wang, K. Weiskopf, R. Majeti, A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. mAbs 7, 946–956 (2015).  https://doi.org/10.1080/19420862.2015.1062192 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    M.P. Chao, C. Tang, R.K. Pachynski, R. Chin, R. Majeti, I.L. Weissman, Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 118, 4890–4901 (2011).  https://doi.org/10.1182/blood-2011-02-338020 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    S.E. Kauder, T.C. Kuo, O. Harrabi, A. Chen, E. Sangalang, L. Doyle, S.S. Rocha, S. Bollini, B. Han, J. Sim, J. Pons, H.I. Wan, ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS One 13, e0201832 (2018).  https://doi.org/10.1371/journal.pone.0201832
  79. 79.
    S. Suzuki, T. Yokobori, N. Tanaka, M. Sakai, A. Sano, T. Inose, M. Sohda, M. Nakajima, T. Miyazaki, H. Kato, H. Kuwano, CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol. Rep. 28, 465–472 (2012).  https://doi.org/10.3892/or.2012.1831 CrossRefPubMedGoogle Scholar
  80. 80.
    T.K. Lee, V.C. Cheung, P. Lu, E.Y. Lau, S. Ma, K.H. Tang, M. Tong, J. Lo, I.O. Ng, Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60, 179–191 (2014).  https://doi.org/10.1002/hep.27070 CrossRefPubMedGoogle Scholar
  81. 81.
    Y. Wang, Z. Xu, S. Guo, L. Zhang, A. Sharma, G.P. Robertson, L. Huang, Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol. Ther. 21, 1919–1929 (2013).  https://doi.org/10.1038/mt.2013.135 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    O.J. Broom, Y. Zhang, P.A. Oldenborg, R. Massoumi, A. Sjolander, CD47 regulates collagen I-induced cyclooxygenase-2 expression and intestinal epithelial cell migration. PLoS One 4, e6371 (2009).  https://doi.org/10.1371/journal.pone.0006371 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Y. Zhang, W. Sime, M. Juhas, A. Sjolander, Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur. J. Cancer 49, 3320–3334 (2013).  https://doi.org/10.1016/j.ejca.2013.06.005 CrossRefPubMedGoogle Scholar
  84. 84.
    K. Gao, L. Huang, Achieving efficient RNAi therapy: Progress and challenges. Acta Pharm. Sin. B 3, 213–225 (2013).  https://doi.org/10.1016/j.apsb.2013.06.005 CrossRefGoogle Scholar
  85. 85.
    M.E. Logtenberg, J.M. Jansen, M. Raaben, M. Toebes, K. Franke, A.M. Brandsma, H.L. Matlung, A. Fauster, R. Gomez-Eerland, N.A. Bakker, Glutaminyl cyclase is an enzymatic modifier of the CD47-SIRPα axis and a target for cancer immunotherapy. Nat. Med. 25, 612–619 (2019).  https://doi.org/10.1038/s41591-019-0356-z CrossRefPubMedGoogle Scholar
  86. 86.
    V.R. Wiersma, Y. He, D.F. Samplonius, R.J. van Ginkel, J. Gerssen, P. Eggleton, J. Zhou, E. Bremer, W. Helfrich, A CD47-blocking TRAIL fusion protein with dual pro-phagocytic and pro-apoptotic anticancer activity. Br. J. Haematol. 164, 304–307 (2014).  https://doi.org/10.1111/bjh.12617 CrossRefPubMedGoogle Scholar
  87. 87.
    Y. Yang, R. Guo, Q. Chen, Y. Liu, P. Zhang, Z. Zhang, X. Chen, T. Wang, A novel bispecific antibody fusion protein co-targeting EGFR and CD47 with enhanced therapeutic index. Biotechnol. Lett. 40, 789–795 (2018).  https://doi.org/10.1007/s10529-018-2535-2 CrossRefPubMedGoogle Scholar
  88. 88.
    X. Zhang, S. Wang, Y. Nan, J. Fan, W. Chen, J. Luan, Y. Wang, Y. Liang, S. Li, W. Tian, D. Ju, Inhibition of autophagy potentiated the anti-tumor effects of VEGF and CD47 bispecific therapy in glioblastoma. Appl. Microbiol. Biotechnol. 102, 6503–6513 (2018).  https://doi.org/10.1007/s00253-018-9069-3 CrossRefPubMedGoogle Scholar
  89. 89.
    T. Valerius, R. Repp, T.P. de Wit, S. Berthold, E. Platzer, J.R. Kalden, M. Gramatzki, J.G. van de Winkel, Involvement of the high-affinity receptor for IgG (Fc gamma RI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy. Blood 82, 931–939 (1993)PubMedCrossRefGoogle Scholar
  90. 90.
    B. Stockmeyer, T. Valerius, R. Repp, I.A. Heijnen, H.J. Buhring, Y.M. Deo, J.R. Kalden, M. Gramatzki, J.G. van de Winkel, Preclinical studies with Fc(gamma)R bispecific antibodies and granulocyte colony-stimulating factor-primed neutrophils as effector cells against HER-2/neu overexpressing breast cancer. Cancer Res. 57, 696–701 (1997)PubMedGoogle Scholar
  91. 91.
    F.J. Hernandez-Ilizaliturri, V. Jupudy, S. Reising, E.A. Repasky, M.S. Czuczman, Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk. Lymphoma 46, 1775–1784 (2005).  https://doi.org/10.1080/17402520500182329 CrossRefPubMedGoogle Scholar
  92. 92.
    M.G. Sanda, E. Bolton, J.J. Mule, S.A. Rosenberg, In vivo administration of recombinant macrophage colony-stimulating factor induces macrophage-mediated antibody-dependent cytotoxicity of tumor cells. J. Immunother. 12, 132–137 (1992)CrossRefPubMedGoogle Scholar
  93. 93.
    X. Liu, Y. Pu, K. Cron, L. Deng, J. Kline, W.A. Frazier, H. Xu, H. Peng, Y.X. Fu, M.M. Xu, CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015).  https://doi.org/10.1038/nm.3931 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    J.T. Sockolosky, M. Dougan, J.R. Ingram, C.C. Ho, M.J. Kauke, S.C. Almo, H.L. Ploegh, K.C. Garcia, Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl. Acad. Sci. U. S. A. 113, 2646–2654 (2016).  https://doi.org/10.1073/pnas.1604268113 CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Seyed Mohammad Gheibi Hayat
    • 1
  • Vanessa Bianconi
    • 2
  • Matteo Pirro
    • 2
  • Mahmoud R. Jaafari
    • 3
    • 4
  • Mahdi Hatamipour
    • 3
  • Amirhossein Sahebkar
    • 4
    • 5
    • 6
    • 7
    Email author
  1. 1.Student Research Committee, Department of Medical Biotechnology, Faculty MedicineMashhad University of Medical SciencesMashhadIran
  2. 2.Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
  3. 3.Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  4. 4.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  5. 5.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  6. 6.School of PharmacyMashhad University of Medical SciencesMashhadIran
  7. 7.Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations