Cellular Oncology

, Volume 42, Issue 5, pp 591–608 | Cite as

Tumor-associated macrophages: role in cancer development and therapeutic implications

  • Arash Salmaninejad
  • Saeed Farajzadeh Valilou
  • Arash Soltani
  • Sepideh Ahmadi
  • Yousef Jafari Abarghan
  • Rhonda J. Rosengren
  • Amirhossein SahebkarEmail author



Tumor-associated macrophages (TAMs) are known to play important roles in the initiation and progression of human cancers, as well as in angiogenesis. TAMs are considered as main components of the tumor microenvironment. Targeting TAMs may serve as a therapeutic strategy for the treatment of cancer. In this review, the signaling pathways, origin, function, polarization and clinical application of TAMs are discussed. The role of TAMs in tumor initiation, progression, angiogenesis, invasion and metastasis are also emphasized. In addition, a variety of clinical and pre-clinical approaches to target TAMs are discussed.


Clinical therapeutic approaches that show most promise include blocking the extravasation of TAMs along with using TAMs as diagnostic biomarkers for cancer progression. The targeting of TAMs in a variety of clinical settings appears to be a promising strategy for decreasing metastasis formation and for improving patient outcome.


Macrophage TAM Cancer Angiogenesis Metastasis Targeted therapy Immunotherapy 


Compliance with ethical standards

Conflict if interests

None declared.


  1. 1.
    F. Balkwill, A. Mantovani, Inflammation and cancer: Back to Virchow? Lancet 357, 539–545 (2001)CrossRefPubMedGoogle Scholar
  2. 2.
    N. Eiro, L. Gonzalez, A. Martinez-Ordonez, B. Fernandez-Garcia, L.O. Gonzalez, S. Cid, F. Dominguez, R. Perez-Fernandez, F.J. Vizoso, Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol 41, 369–378 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Nilendu, S.C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G.S. Sarode, J.K. Pal, N.K. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell Oncol 41, 353–367 (2018)CrossRefGoogle Scholar
  4. 4.
    S.K. Biswas, P. Allavena, A. Mantovani, Tumor-associated macrophages: Functional diversity, clinical significance, and open questions. Semin Immunopathol 35, 585–600 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    S. Gordon, P.R. Taylor, Monocyte and macrophage heterogeneity. Nat Rev Immunol 5, 953–964 (2005)CrossRefPubMedGoogle Scholar
  6. 6.
    C.D. Mills, K. Kincaid, J.M. Alt, M.J. Heilman, A.M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166–6173 (2000)CrossRefPubMedGoogle Scholar
  7. 7.
    F.O. Martinez, A. Sica, A. Mantovani, M. Locati, Macrophage activation and polarization. Front Biosci 13, 453–461 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    L.A.J. O'Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553–565 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    X. Hu, L.B. Ivashkiv, Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    S.J. Waddell, S.J. Popper, K.H. Rubins, M.J. Griffiths, P.O. Brown, M. Levin, D.A. Relman, Dissecting interferon-induced transcriptional programs in human peripheral blood cells. PLoS One 5, e9753 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    F.O. Martinez, S. Gordon, M. Locati, A. Mantovani, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 177, 7303–7311 (2006)CrossRefPubMedGoogle Scholar
  12. 12.
    G.J. Nau, J.F. Richmond, A. Schlesinger, E.G. Jennings, E.S. Lander, R.A. Young, Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 99, 1503–1508 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25, 677–686 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549–555 (2002)CrossRefPubMedGoogle Scholar
  15. 15.
    F.O. Martinez, L. Helming, R. Milde, A. Varin, B.N. Melgert, C. Draijer, B. Thomas, M. Fabbri, A. Crawshaw, L.P. Ho, N.H. Ten Hacken, V. Cobos Jimenez, N.A. Kootstra, J. Hamann, D.R. Greaves, M. Locati, A. Mantovani, S. Gordon, Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: Similarities and differences. Blood 121, e57–e69 (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    C.J. Scotton, F.O. Martinez, M.J. Smelt, M. Sironi, M. Locati, A. Mantovani, S. Sozzani, Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174, 834–845 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    F. Davatchi, F. Shahram, C. Chams-Davatchi, H. Shams, A. Nadji, M. Akhlaghi, T. Faezi, Z. Ghodsi, A. Faridar, F. Ashofteh, Behcet’s disease: From east to west. Clin Rheumatol 29, 823–833 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    D.J. Cua, S.A. Stohlman, In vivo effects of T helper cell type 2 cytokines on macrophage antigen-presenting cell induction of T helper subsets. J Immunol 159, 5834–5840 (1997)PubMedGoogle Scholar
  19. 19.
    N.D. Savage, T. de Boer, K.V. Walburg, S.A. Joosten, K. van Meijgaarden, A. Geluk, T.H. Ottenhoff, Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181, 2220–2226 (2008)CrossRefPubMedGoogle Scholar
  20. 20.
    F.O. Martinez, S. Gordon, The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep 6, 13 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. cell 144, 646–674 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    B.B. Aggarwal, R.V. Vijayalekshmi, B. Sung, Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin Cancer Res 15, 425–430 (2009)CrossRefPubMedGoogle Scholar
  23. 23.
    F. Colotta, P. Allavena, A. Sica, C. Garlanda, A. Mantovani, Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 30, 1073–1081 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    G. Cassinelli, E. Favini, D. Degl'Innocenti, A. Salvi, G. De Petro, M.A. Pierotti, F. Zunino, M.G. Borrello, C. Lanzi, RET/PTC1-driven neoplastic transformation and Proinvasive phenotype of human Thyrocytes involve met induction and β-catenin nuclear translocation. Neoplasia 11, 10–21 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    A. Sparmann, D. Bar-Sagi, Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    K. Shchors, E. Shchors, F. Rostker, E.R. Lawlor, L. Brown-Swigart, G.I. Evan, The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20, 2527–2538 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    P. Staller, J. Sulitkova, J. Lisztwan, H. Moch, E.J. Oakeley, W. Krek, Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003)CrossRefPubMedGoogle Scholar
  28. 28.
    A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation. Nature 454, 436–444 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    J.F. Bromberg, M.H. Wrzeszczynska, G. Devgan, Y. Zhao, R.G. Pestell, C. Albanese, J.E. Darnell Jr., Stat3 as an oncogene. Cell 98, 295–303 (1999)CrossRefPubMedGoogle Scholar
  30. 30.
    A. Saccani, T. Schioppa, C. Porta, S.K. Biswas, M. Nebuloni, L. Vago, B. Bottazzi, M.P. Colombo, A. Mantovani, A. Sica, p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66, 11432–11440 (2006)CrossRefPubMedGoogle Scholar
  31. 31.
    T. Wang, G. Niu, M. Kortylewski, L. Burdelya, K. Shain, S. Zhang, R. Bhattacharya, D. Gabrilovich, R. Heller, D. Coppola, W. Dalton, R. Jove, D. Pardoll, H. Yu, Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10, 48–54 (2004)CrossRefPubMedGoogle Scholar
  32. 32.
    T. Itesako, N. Seki, H. Yoshino, T. Chiyomaru, T. Yamasaki, H. Hidaka, T. Yonezawa, N. Nohata, T. Kinoshita, M. Nakagawa, The microRNA expression signature of bladder cancer by deep sequencing: The functional significance of the miR-195/497 cluster. PLoS One 9, e84311 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Y. Ben-Neriah, M. Karin, Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12, 715–723 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    M. Kortylewski, M. Kujawski, T. Wang, S. Wei, S. Zhang, S. Pilon-Thomas, G. Niu, H. Kay, J. Mule, W.G. Kerr, R. Jove, D. Pardoll, H. Yu, Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11, 1314–1321 (2005)CrossRefPubMedGoogle Scholar
  35. 35.
    B. Wang, Q. Li, L. Qin, S. Zhao, J. Wang, X. Chen, Transition of tumor-associated macrophages from MHC class II (hi) to MHC class II (low) mediates tumor progression in mice. BMC Immunol 12, 43 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Y. Nakanishi, M. Nakatsuji, H. Seno, S. Ishizu, R. Akitake-Kawano, K. Kanda, T. Ueo, H. Komekado, M. Kawada, M. Minami, T. Chiba, COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32, 1333–1339 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    K. Chen, J. Huang, W. Gong, P. Iribarren, N.M. Dunlop, J.M. Wang, Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7, 1271–1285 (2007)CrossRefPubMedGoogle Scholar
  38. 38.
    S. Banerjee, K. Halder, A. Bose, P. Bhattacharya, G. Gupta, S. Karmahapatra, S. Das, S. Chaudhuri, S. Bhattacharyya Majumdar, S. Majumdar, TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages. Carcinogenesis 32, 1789–1797 (2011)CrossRefPubMedGoogle Scholar
  39. 39.
    J. Rius, M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, M. Karin, NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453, 807–811 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Y.C. Wang, F. He, F. Feng, X.W. Liu, G.Y. Dong, H.Y. Qin, X.B. Hu, M.H. Zheng, L. Liang, L. Feng, Y.M. Liang, H. Han, Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70, 4840–4849 (2010)CrossRefPubMedGoogle Scholar
  41. 41.
    L. Sanchez-Martin, A. Estecha, R. Samaniego, S. Sanchez-Ramon, M.A. Vega, P. Sanchez-Mateos, The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood 117, 88–97 (2011)CrossRefPubMedGoogle Scholar
  42. 42.
    S.-C. Wang, J.-H. Hong, C. Hsueh, C.-S. Chiang, Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Investig 92, 151–162 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    J.Y. Park, J.Y. Sung, J. Lee, Y.K. Park, Y.W. Kim, G.Y. Kim, K.Y. Won, S.J. Lim, Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer. Clin Res Hepatol Gastroenterol 40, 357–365 (2016)CrossRefPubMedGoogle Scholar
  44. 44.
    J. Wang, G.C.W. Man, T.H. Chan, J. Kwong, C.C. Wang, A prodrug of green tea polyphenol (−)-epigallocatechin-3-gallate (pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Lett 412, 10–20 (2018)CrossRefPubMedGoogle Scholar
  45. 45.
    A. Mantovani, A. Sica, Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol 22, 231–237 (2010)CrossRefPubMedGoogle Scholar
  46. 46.
    S.J. Moghaddam, H. Li, S.N. Cho, M.K. Dishop, I.I. Wistuba, L. Ji, J.M. Kurie, B.F. Dickey, F.J. Demayo, Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am J Respir Cell Mol Biol 40, 443–453 (2009)CrossRefPubMedGoogle Scholar
  47. 47.
    M. Karin, F.R. Greten, NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749–759 (2005)CrossRefPubMedGoogle Scholar
  48. 48.
    L. Deng, J.F. Zhou, R.S. Sellers, J.F. Li, A.V. Nguyen, Y. Wang, A. Orlofsky, Q. Liu, D.A. Hume, J.W. Pollard, L. Augenlicht, E.Y. Lin, A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176, 952–967 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    F. Gotsch, R. Romero, L. Friel, J.P. Kusanovic, J. Espinoza, O. Erez, N.G. Than, P. Mittal, S. Edwin, B.H. Yoon, C.J. Kim, S. Mazaki-Tovi, T. Chaiworapongsa, S.S. Hassan, CXCL10/IP-10: A missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern-Fetal Neonatal Med 20, 777–792 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    F.R. Greten, L. Eckmann, T.F. Greten, J.M. Park, Z.W. Li, L.J. Egan, M.F. Kagnoff, M. Karin, IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004)CrossRefPubMedGoogle Scholar
  51. 51.
    B. Pang, X. Zhou, H. Yu, M. Dong, K. Taghizadeh, J.S. Wishnok, S.R. Tannenbaum, P.C. Dedon, Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation. Carcinogenesis 28, 1807–1813 (2007)CrossRefPubMedGoogle Scholar
  52. 52.
    Q. Guo, J. Li, H. Lin, Effect and molecular mechanisms of traditional Chinese medicine on regulating tumor immunosuppressive microenvironment. Biomed Res Int 12, 2015 (2015)Google Scholar
  53. 53.
    J. Kim, J.-S. Bae, Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediat Inflamm 2016, 1–11 (2016)Google Scholar
  54. 54.
    S. Farajzadeh Valilou, M. Keshavarz-Fathi, N. Silvestris, A. Argentiero, N. Rezaei, The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev 39, 46–61 (2018)CrossRefPubMedGoogle Scholar
  55. 55.
    Q. Guo, Z. Jin, Y. Yuan, R. Liu, T. Xu, H. Wei, X. Xu, S. He, S. Chen, Z. Shi, W. Hou, B. Hua, New mechanisms of tumor-associated macrophages on promoting tumor progression: Recent research advances and potential targets for tumor immunotherapy. J Immunol Res 2016, 12 (2016)Google Scholar
  56. 56.
    M. Lohela, A.J. Casbon, A. Olow, L. Bonham, D. Branstetter, N. Weng, J. Smith, Z. Werb, Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc Natl Acad Sci U S A 111, E5086–E5095 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    A. Angelis, D. Tordrup, P. Kanavos, Socio-economic burden of rare diseases: A systematic review of cost of illness evidence. Health Policy 119, 964–979 (2015)CrossRefPubMedGoogle Scholar
  58. 58.
    K. Van Naarden Braun, D. Christensen, N. Doernberg, L. Schieve, C. Rice, L. Wiggins, D. Schendel, M. Yeargin-Allsopp, Trends in the prevalence of autism Spectrum disorder, cerebral palsy, hearing loss, intellectual disability, and vision impairment, metropolitan Atlanta, 1991–2010. PLoS One 10, 1991-2010 (2015)Google Scholar
  59. 59.
    T. Lu, R. Ramakrishnan, S. Altiok, J.-I. Youn, P. Cheng, E. Celis, V. Pisarev, S. Sherman, M.B. Sporn, D. Gabrilovich, Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121, 4015–4029 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    P.C. Rodriguez, D.G. Quiceno, J. Zabaleta, B. Ortiz, A.H. Zea, M.B. Piazuelo, A. Delgado, P. Correa, J. Brayer, E.M. Sotomayor, S. Antonia, J.B. Ochoa, A.C. Ochoa, Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64, 5839–5849 (2004)CrossRefPubMedGoogle Scholar
  61. 61.
    A. Kondo, T. Yamashita, H. Tamura, W. Zhao, T. Tsuji, M. Shimizu, E. Shinya, H. Takahashi, K. Tamada, L. Chen, K. Dan, K. Ogata, Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood 116, 1124–1131 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    F. Vari, D. Arpon, C. Keane, M.S. Hertzberg, D. Talaulikar, S. Jain, Q. Cui, E. Han, J. Tobin, R. Bird, D. Cross, A. Hernandez, C. Gould, S. Birch, M.K. Gandhi, Immune evasion via PD-1/PD-L1 on NK-cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 131, 1809–1819 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    L. Yang, Y. Zhang, Tumor-associated macrophages: From basic research to clinical application. J Hematol Oncol 10, 58 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    T. Chanmee, P. Ontong, K. Konno, N. Itano, Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6, 1670–1690 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    J. Choi, J. Gyamfi, H. Jang, J.S. Koo, The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol 6, 11–916 (2017)Google Scholar
  66. 66.
    E. Obeid, R. Nanda, Y.-X. Fu, O. Olopade, The role of tumor-associated macrophages in breast cancer progression. Int J Oncol 43, 5–12 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    D. Capece, M. Fischietti, D. Verzella, A. Gaggiano, G. Cicciarelli, A. Tessitore, F. Zazzeroni, E. Alesse, The inflammatory microenvironment in hepatocellular carcinoma: A pivotal role for tumor-associated macrophages. Biomed Res Int 2013, 15–30 (2012)Google Scholar
  68. 68.
    M. Erreni, A. Mantovani, P. Allavena, Tumor-associated macrophages (TAM) and inflammation in colorectal Cancer. Cancer Microenviron 4, 141–154 (2011)CrossRefPubMedGoogle Scholar
  69. 69.
    C. Lapa, T. Linsenmann, K. Lückerath, S. Samnick, K. Herrmann, C. Stoffer, R.-I. Ernestus, A.K. Buck, M. Löhr, C.-M. Monoranu, Tumor-associated macrophages in glioblastoma Multiforme—A suitable target for somatostatin receptor-based imaging and therapy? PLoS One 10, e0122269 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Z. Chen, X. Feng, C.J. Herting, V.A. Garcia, K. Nie, W.W. Pong, R. Rasmussen, B. Dwivedi, S. Seby, S.A. Wolf, D.H. Gutmann, D. Hambardzumyan, Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77, 2266–2278 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    R.M. Fawzy, E.A. Said, S.M. Mohamed, N.A. Fouad, E.M. Akl, Serum Interleukin-33 in Behcet's disease: Its relation to disease activity and clinical manifestations. Egypt J Immunol 22, 1 (2015)PubMedGoogle Scholar
  72. 72.
    A. Brenot, B.L. Knolhoff, D.G. DeNardo, G.D. Longmore, SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion. Oncogenesis 7, 32 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    E. Giurisato, Q. Xu, S. Lonardi, B. Telfer, I. Russo, A. Pearson, K.G. Finegan, W. Wang, J. Wang, N.S. Gray, W. Vermi, Z. Xia, C. Tournier, Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A 115, E2801–E2e10 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    V. Riabov, A. Gudima, N. Wang, A. Mickley, A. Orekhov, J. Kzhyshkowska, Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5, 75 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    C. Medrek, F. Pontén, K. Jirström, K. Leandersson, The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12, 306 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    A. Ferrer-Admetlla, M. Sikora, H. Laayouni, A. Esteve, F. Roubinet, A. Blancher, F. Calafell, J. Bertranpetit, F. Casals, A natural history of FUT2 polymorphism in humans. Mol Biol Evol 26, 1993–2003 (2009)CrossRefPubMedGoogle Scholar
  77. 77.
    A.J. Majmundar, W.J. Wong, M.C. Simon, Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40, 294–309 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    M.A. Badawi, D.M. Abouelfadl, S.L. El-Sharkawy, W.E.A. El-Aal, N.F. Abbas, Tumor-associated macrophage (TAM) and angiogenesis in human Colon carcinoma. Maced J Med Sci 3, 209–214 (2015)CrossRefGoogle Scholar
  79. 79.
    C.E. Lewis, M. De Palma, L. Naldini, Tie2-expressing monocytes and tumor angiogenesis: Regulation by hypoxia and angiopoietin-2. Cancer Res 67, 8429–8432 (2007)CrossRefPubMedGoogle Scholar
  80. 80.
    A. Capobianco, A. Monno, L. Cottone, M.A. Venneri, D. Biziato, F. Di Puppo, S. Ferrari, M. De Palma, A.A. Manfredi, P. Rovere-Querini, Proangiogenic Tie2(+) macrophages infiltrate human and murine Endometriotic lesions and dictate their growth in a mouse model of the disease. Am J Pathol 179, 2651–2659 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    R. Turrini, A. Pabois, I. Xenarios, G. Coukos, J.-F. Delaloye, M.-A. Doucey, TIE-2 expressing monocytes in human cancers. Oncoimmunology 6, e1303585 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    J. Lee, J. Song, E.S. Kwon, S. Jo, M.K. Kang, Y.J. Kim, Y. Hwang, H. Bae, T.H. Kang, S. Chang, H.J. Cho, S.C. Kim, S. Kim, S.S. Koh, CTHRC1 promotes angiogenesis by recruiting Tie2-expressing monocytes to pancreatic tumors. Exp Mol Med 48, 87 (2016)Google Scholar
  83. 83.
    X. Wang, Q. Zhu, Y. Lin, L. Wu, X. Wu, K. Wang, Q. He, C. Xu, X. Wan, Crosstalk between TEMs and endothelial cells modulates angiogenesis and metastasis via IGF1-IGF1R signalling in epithelial ovarian cancer. Br J Cancer 12, 297 (2017)Google Scholar
  84. 84.
    C.E. Lewis, M. De Palma, L. Naldini, Tie2-expressing monocytes and tumor angiogenesis: Regulation by hypoxia and Angiopoietin-2. Cancer Res 67, 8429–8432 (2007)CrossRefPubMedGoogle Scholar
  85. 85.
    L. Chen, J. Li, F. Wang, C. Dai, F. Wu, X. Liu, T. Li, R. Glauben, Y. Zhang, G. Nie, Y. He, Z. Qin, Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherapy. Cancer Res 76, 6828–6838 (2016)CrossRefPubMedGoogle Scholar
  86. 86.
    B.I. Rini, Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: Current status and future directions. Clin Cancer Res 13, 1098–1106 (2007)CrossRefPubMedGoogle Scholar
  87. 87.
    M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: Molecular and cellular mechanisms underlying lung metastasis. Cell Oncol 41, 123–140 (2018)CrossRefGoogle Scholar
  88. 88.
    L. Manso, F. Moreno, R. Márquez, B. Castelo, A. Arcediano, M. Arroyo, A.I. Ballesteros, I. Calvo, M.J. Echarri, S. Enrech, A. Gómez, R. González del Val, E. López-Miranda, M. Martín-Angulo, N. Martínez-Jañez, C. Olier, P. Zamora, Use of bevacizumab as a first-line treatment for metastatic breast cancer. Curr Oncol 22, e51–e60 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    L. Rossi, M. Verrico, E. Zaccarelli, A. Papa, M. Colonna, M. Strudel, P. Vici, V. Bianco, F. Tomao, Bevacizumab in ovarian cancer: A critical review of phase III studies. Oncotarget 8, 12389–12405 (2017)PubMedGoogle Scholar
  90. 90.
    M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari, S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol 40, 419–441 (2017)CrossRefGoogle Scholar
  91. 91.
    K.S. Tewari, M.W. Sill, R.T. Penson, H. Huang, L.M. Ramondetta, L.M. Landrum, A. Oaknin, T.J. Reid, M.M. Leitao, H.E. Michael, P.J. DiSaia, L.J. Copeland, W.T. Creasman, F.B. Stehman, M.F. Brady, R.A. Burger, J.T. Thigpen, M.J. Birrer, S.E. Waggoner, D.H. Moore, K.Y. Look, W.J. Koh, B.J. Monk, Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (gynecologic oncology group 240). Lancet 27, 31607–31600 (2017)Google Scholar
  92. 92.
    A. Scholz, P.N. Harter, S. Cremer, B.H. Yalcin, S. Gurnik, M. Yamaji, M. Di Tacchio, K. Sommer, P. Baumgarten, O. Bahr, J.P. Steinbach, J. Trojan, M. Glas, U. Herrlinger, D. Krex, M. Meinhardt, A. Weyerbrock, M. Timmer, R. Goldbrunner, M. Deckert, C. Braun, J. Schittenhelm, J.T. Frueh, E. Ullrich, M. Mittelbronn, K.H. Plate, Y. Reiss, Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med 8, 39–57 (2016)CrossRefPubMedGoogle Scholar
  93. 93.
    T.E. Peterson, N.D. Kirkpatrick, Y. Huang, C.T. Farrar, K.A. Marijt, J. Kloepper, M. Datta, Z. Amoozgar, G. Seano, K. Jung, W.S. Kamoun, T. Vardam, M. Snuderl, J. Goveia, S. Chatterjee, A. Batista, A. Muzikansky, C.C. Leow, L. Xu, T.T. Batchelor, D.G. Duda, D. Fukumura, R.K. Jain, Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A 113, 4470–4475 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    K. Erturk, F. Tas, M. Serilmez, E. Bilgin, V. Yasasever, Clinical Signifčcance of Serum Ykl-40 (Chitinase-3-Like-1 protein) as a biomarker in melanoma: An analysis of 112 Turkish patients. ASIAN PAC J CANCER P 18, 1383–1387 (2017)Google Scholar
  95. 95.
    T. Vaananen, J. Kallio, K. Vuolteenaho, A. Ojala, T. Luukkaala, M. Hamalainen, T. Tammela, P.L. Kellokumpu-Lehtinen, E. Moilanen, High YKL-40 is associated with poor survival in patients with renal cell carcinoma: A novel independent prognostic marker. Scand J Urol 23, 1–6 (2017)Google Scholar
  96. 96.
    A. Attia, A. Rasmy, A. Amin, M. Alanazi, Evaluation of pleural fluid YKL-40 as a marker of malignant pleural effusion. Egypt J Chest Dis Tuberc 64, 489–495 (2015)CrossRefGoogle Scholar
  97. 97.
    R.V. Ghartavol, R. Mombeiny, A. Salmaninejad, S.M.R. Sorkhabadi, R.F. Majidi, M.R. Jaafari, H. Mirzaei, Tumor-associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 233, 9223–9236 (2018)CrossRefGoogle Scholar
  98. 98.
    R. Shao, R. Francescone, N. Ngernyuang, B. Bentley, S.L. Taylor, L. Moral, W. Yan, Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastom. Carcinogenesis 35, 373–382 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    X.W. Chen, T.J. Yu, J. Zhang, Y. Li, H.L. Chen, G.F. Yang, W. Yu, Y.Z. Liu, X.X. Liu, C.F. Duan, H.L. Tang, M. Qiu, C.L. Wang, H. Zheng, J. Yue, A.M. Guo, J. Yang, CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene 36, 5045–5057 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    C. Wang, Y. Li, H. Chen, J. Zhang, T. Qin, C. Duan, X. Chen, Y. Liu, X. Zhou, J. Yang, Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett 402, 131–141 (2017)CrossRefPubMedGoogle Scholar
  101. 101.
    J.-W. Tjiu, J.-S. Chen, C.-T. Shun, S.-J. Lin, Y.-H. Liao, C.-Y. Chu, T.-F. Tsai, H.-C. Chiu, Y.-S. Dai, H. Inoue, P.-C. Yang, M.-L. Kuo, S.-H. Jee, Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by Cyclooxygenase-2 induction. J Invest Dermatol 129, 1016–1025 (2009)CrossRefPubMedGoogle Scholar
  102. 102.
    H. Son, A. Moon, Epithelial-mesenchymal transition and cell invasion. Toxicological Res 26, 245–252 (2010)CrossRefGoogle Scholar
  103. 103.
    T. Wu, B. Cheng, L. Fu, Clinical applications of circulating tumor cells in pharmacotherapy: Challenges and perspectives. Mol Pharmacol 92, 232–239 (2017)CrossRefPubMedGoogle Scholar
  104. 104.
    S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15, 178–196 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    M.A. Huber, N. Kraut, H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17, 548–558 (2005)CrossRefPubMedGoogle Scholar
  106. 106.
    H. Fazilaty, M. Gardaneh, T. Bahrami, A. Salmaninejad, B. Behnam, Crosstalk between breast cancer stem cells and metastatic niche: Emerging molecular metastasis pathway? Tumor Biol 34, 2019–2030 (2013)CrossRefGoogle Scholar
  107. 107.
    J. Zhang, Y. Yan, Y. Yang, L. Wang, M. Li, J. Wang, X. Liu, X. Duan, J. Wang, High infiltration of tumor-associated macrophages influences poor prognosis in human gastric Cancer patients, associates with the phenomenon of EMT. Medicine 95, e2636 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    S.P. Chiang, R.M. Cabrera, J.E. Segall, Tumor cell intravasation. Am J Physiol Cell Physiol 311, 1–14 (2016)CrossRefGoogle Scholar
  109. 109.
    A. Dovas, A. Patsialou, A.S. Harney, J. Condeelis, D. Cox, Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J Microsc 251, 261–269 (2013)CrossRefPubMedGoogle Scholar
  110. 110.
    J.B. Wyckoff, Y. Wang, E.Y. Lin, J.F. Li, S. Goswami, E.R. Stanley, J.E. Segall, J.W. Pollard, J. Condeelis, Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67, 2649–2656 (2007)CrossRefPubMedGoogle Scholar
  111. 111.
    J. Kim, J.S. Bae, Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediat Inflamm 6058147, 1–11 (2016)Google Scholar
  112. 112.
    E. Gorelik, R.H. Wiltrout, M.J. Brunda, H.T. Holden, R.B. Herberman, Augmentation of metastasis formation by thioglycollate-elicited macrophages. Int J Cancer 29, 575–581 (1982)CrossRefPubMedGoogle Scholar
  113. 113.
    J.M. Hu, K. Liu, J.H. Liu, X.L. Jiang, X.L. Wang, L. Yang, Y.Z. Chen, C.X. Liu, S.G. Li, X.B. Cui, H. Zou, L.J. Pang, J. Zhao, Y. Qi, W.H. Liang, X.L. Yuan, F. Li, The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Exp Mol Pathol 102, 15–21 (2017)CrossRefPubMedGoogle Scholar
  114. 114.
    R.D. Leek, N.C. Hunt, R.J. Landers, C.E. Lewis, J.A. Royds, A.L. Harris, Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190, 430–436 (2000)CrossRefPubMedGoogle Scholar
  115. 115.
    S. Sousa, J. Määttä, The role of tumour-associated macrophages in bone metastasis. J Bone Oncol 5, 135–138 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    V. Chitu, E.R. Stanley, Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18, 39–48 (2006)CrossRefPubMedGoogle Scholar
  117. 117.
    R. Noy, J.W. Pollard, Tumor-associated macrophages: From mechanisms to therapy. Immunity 41, 49–61 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    C.H. Ries, S. Hoves, M.A. Cannarile, D. Ruttinger, CSF-1/CSF-1R targeting agents in clinical development for cancer therapy. Curr Opin Pharmacol 23, 45–51 (2015)CrossRefPubMedGoogle Scholar
  119. 119.
    J. Wyckoff, W. Wang, E.Y. Lin, Y. Wang, F. Pixley, E.R. Stanley, T. Graf, J.W. Pollard, J. Segall, J. Condeelis, A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64, 7022–7029 (2004)CrossRefPubMedGoogle Scholar
  120. 120.
    J. Wang, Z. Cao, X.M. Zhang, M. Nakamura, M. Sun, J. Hartman, R.A. Harris, Y. Sun, Y. Cao, Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res 75, 306–315 (2015)CrossRefPubMedGoogle Scholar
  121. 121.
    S. Goswami, E. Sahai, J.B. Wyckoff, M. Cammer, D. Cox, F.J. Pixley, E.R. Stanley, J.E. Segall, J.S. Condeelis, Macrophages promote the invasion of breast carcinoma cells via a Colony-stimulating Factor-1/epidermal growth factor paracrine loop. Cancer Res 65, 5278–5283 (2005)CrossRefPubMedGoogle Scholar
  122. 122.
    J.A. Joyce, J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239–252 (2009)CrossRefPubMedGoogle Scholar
  123. 123.
    S.M. Pyonteck, L. Akkari, A.J. Schuhmacher, R.L. Bowman, L. Sevenich, D.F. Quail, O.C. Olson, M.L. Quick, J.T. Huse, V. Teijeiro, M. Setty, C.S. Leslie, Y. Oei, A. Pedraza, J. Zhang, C.W. Brennan, J.C. Sutton, E.C. Holland, D. Daniel, J.A. Joyce, CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19, 1264–1272 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19, 20–27 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    D.L. Adams, S.S. Martin, R.K. Alpaugh, M. Charpentier, S. Tsai, R.C. Bergan, I.M. Ogden, W. Catalona, S. Chumsri, C.M. Tang, M. Cristofanilli, Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci 111, 3514–3519 (2014)CrossRefPubMedGoogle Scholar
  126. 126.
    D.L. Adams, D.K. Adams, R.K. Alpaugh, M. Cristofanilli, S.S. Martin, S. Chumsri, C.M. Tang, J.R. Marks, Circulating Cancer-associated macrophage-like cells differentiate malignant breast Cancer and benign breast conditions. Cancer Epidemiol Biomark Prev 25, 1037–1042 (2016)CrossRefGoogle Scholar
  127. 127.
    M. Tripathi, S. Nandana, S. Billet, K.A. Cavassani, R. Mishra, L.W. Chung, E.M. Posadas, N.A. Bhowmick, Modulation of cabozantinib efficacy by the prostate tumor microenvironment. Oncotarget 8, 87891- 902 (2017)Google Scholar
  128. 128.
    F. Dammeijer, L.A. Lievense, M.E. Kaijen-Lambers, M. van Nimwegen, K. Bezemer, J.P. Hegmans, T. van Hall, R.W. Hendriks, J.G. Aerts, Depletion of tumor-associated macrophages with a CSF-1R kinase inhibitor enhances antitumor immunity and survival induced by DC immunotherapy. Cancer Immunol Res 5, 535–546 (2017)CrossRefPubMedGoogle Scholar
  129. 129.
    Y. Lin, C. Wei, Y. Liu, Y. Qiu, C. Liu, F. Guo, Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis. Cancer Sci 104, 1217–1225 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    K. Stoletov, H. Kato, E. Zardouzian, J. Kelber, J. Yang, S. Shattil, R. Klemke, Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123, 2332–2341 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    A.B. Al-Mehdi, K. Tozawa, A.B. Fisher, L. Shientag, A. Lee, R.J. Muschel, Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nat Med 6, 100–102 (2000)CrossRefPubMedGoogle Scholar
  132. 132.
    D. Schumacher, B. Strilic, K.K. Sivaraj, N. Wettschureck, S. Offermanns, Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24, 130–137 (2013)CrossRefPubMedGoogle Scholar
  133. 133.
    T. Kitamura, B.-Z. Qian, J.W. Pollard, Immune cell promotion of metastasis. Nat Rev Immunol 15, 73–86 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    S.Y. Lim, A.E. Yuzhalin, A.N. Gordon-Weeks, R.J. Muschel, Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7, 28697–28710 (2016)PubMedPubMedCentralGoogle Scholar
  135. 135.
    S.R. Nielsen, M.C. Schmid, Macrophages as key drivers of Cancer progression and metastasis. Mediat Inflamm 9624760, 1–11 (2017)CrossRefGoogle Scholar
  136. 136.
    T. Kitamura, B.-Z. Qian, D. Soong, L. Cassetta, R. Noy, G. Sugano, Y. Kato, J. Li, J.W. Pollard, CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212, 1043–1059 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    S. Weis, J. Cui, L. Barnes, D. Cheresh, Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167, 223–229 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    T.M. Nywening, A. Wang-Gillam, D.E. Sanford, B.A. Belt, R.Z. Panni, B.M. Cusworth, A.T. Toriola, R.K. Nieman, L.A. Worley, M. Yano, K.J. Fowler, A.C. Lockhart, R. Suresh, B.R. Tan, K.H. Lim, R.C. Fields, S.M. Strasberg, W.G. Hawkins, D.G. DeNardo, S.P. Goedegebuure, D.C. Linehan, Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-Centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 17, 651–662 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    B.Z. Qian, J. Li, H. Zhang, T. Kitamura, J. Zhang, L.R. Campion, E.A. Kaiser, L.A. Snyder, J.W. Pollard, CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    M. Roblek, E. Strutzmann, C. Zankl, T. Adage, M. Heikenwalder, A. Atlic, R. Weis, A. Kungl, L. Borsig, Targeting of CCL2-CCR2-glycosaminoglycan Axis using a CCL2 decoy protein attenuates metastasis through inhibition of tumor cell seeding. Neoplasia 18, 49–59 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    T. Kitamura, B.-Z. Qian, J.W. Pollard, Immune cell promotion of metastasis. Nat Rev Immunol 15, 73–86 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    S. Hiratsuka, A. Watanabe, H. Aburatani, Y. Maru, Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8, 1369–1375 (2006)CrossRefPubMedGoogle Scholar
  143. 143.
    A. Zoccoli, M. Iuliani, F. Pantano, M. Imperatori, S. Intagliata, B. Vincenzi, P. Marchetti, N. Papapietro, V. Denaro, G. Tonini, D. Santini, Premetastatic niche: Ready for new therapeutic interventions? Expert Opin Ther Targets 16(23), S119–S129 (2012)CrossRefPubMedGoogle Scholar
  144. 144.
    D. Wang, H. Sun, J. Wei, B. Cen, R.N. DuBois, CXCL1 is critical for Premetastatic niche formation and metastasis in colorectal Cancer. Cancer Res 77, 3655–3665 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    M. Miyake, S. Hori, Y. Morizawa, Y. Tatsumi, Y. Nakai, S. Anai, K. Torimoto, K. Aoki, N. Tanaka, K. Shimada, N. Konishi, M. Toritsuka, T. Kishimoto, C.J. Rosser, K. Fujimoto, CXCL1-mediated interaction of Cancer cells with tumor-associated macrophages and Cancer-associated fibroblasts promotes tumor progression in human bladder Cancer. Neoplasia 18, 636–646 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    J. Ursini-Siegel, P.M. Siegel, The influence of the pre-metastatic niche on breast cancer metastasis. Cancer Lett 380, 281–288 (2016)CrossRefPubMedGoogle Scholar
  147. 147.
    J. Chen, Y. Yao, C. Gong, F. Yu, S. Su, J. Chen, B. Liu, H. Deng, F. Wang, L. Lin, H. Yao, F. Su, K.S. Anderson, Q. Liu, M.E. Ewen, X. Yao, E. Song, CCL18 from tumor-associated macrophages promotes breast Cancer metastasis via PITPNM3. Cancer Cell 19, 814–816 (2011)CrossRefGoogle Scholar
  148. 148.
    H. Peinado, H. Zhang, I.R. Matei, B. Costa-Silva, A. Hoshino, G. Rodrigues, B. Psaila, R.N. Kaplan, J.F. Bromberg, Y. Kang, M.J. Bissell, T.R. Cox, A.J. Giaccia, J.T. Erler, S. Hiratsuka, C.M. Ghajar, D. Lyden, Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer 17, 302–317 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Arash Salmaninejad
    • 1
    • 2
  • Saeed Farajzadeh Valilou
    • 3
  • Arash Soltani
    • 2
    • 4
  • Sepideh Ahmadi
    • 5
    • 6
  • Yousef Jafari Abarghan
    • 2
  • Rhonda J. Rosengren
    • 7
  • Amirhossein Sahebkar
    • 8
    • 9
    • 10
    • 11
    Email author
  1. 1.Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  3. 3.Medical Genetics Network (MeGeNe)Universal Scientific Education and Research Network (USERN)TehranIran
  4. 4.Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  5. 5.Student Research Committee, Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  7. 7.Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
  8. 8.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  9. 9.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  10. 10.School of PharmacyMashhad University of Medical SciencesMashhadIran
  11. 11.Department of Medical Biotechnology, School of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations