Advertisement

The tumor suppressor FOXO3a mediates the response to EGFR inhibition in glioblastoma cells

  • Guillem Ramis
  • Ruth Villalonga-Planells
  • Margalida Serra-Sitjar
  • Marta Brell
  • Silvia Fernández de Mattos
  • Priam VillalongaEmail author
Original Paper
  • 31 Downloads

Abstract

Purpose

Although EGFR activation is a hallmark of glioblastoma (GBM), anti-EGFR therapy has so far not yielded the desired effects. Targeting PI3K/Akt has been proposed as a strategy to increase the cellular sensitivity to EGFR inhibitors. Here we evaluated the contribution of FOXO3a, a key Akt target, in the response of GBM cells to EGFR inhibition.

Methods

FOXO3a activation was assessed by immunofluorescence and gene reporter assays, and by evaluating target gene expression using Western blotting and qRT-PCR. Cellular effects were evaluated using cell viability and apoptosis assays, i.e., Annexin V/PI staining and caspase 3/7 activity measurements. Drug synergism was evaluated by performing isobolographic analyses. Gene silencing experiments were performed using stable shRNA transfections.

Results

We found that EGFR inhibition in GBM cells led to FOXO3a activation and to transcriptional modulation of its key targets, including repression of the oncogene FOXM1. In addition, we found that specific FOXO3a activation recapitulated the molecular effects of EGFR inhibition, and that the FOXO3a activator trifluoperazine, a FDA-approved antipsychotic agent, reduced GBM cell growth. Subsequent isobolographic analyses of combination experiments indicated that trifluoperazine and erlotinib cooperated synergistically and that their concomitant treatment induced a robust activation of FOXO3a, leading to apoptosis in GBM cells. Using gene silencing, we found that FOXO3a is essential for the response of GBM cells to EGFR inhibition.

Conclusions

Our data indicate that FOXO3a activation is a crucial event in the response of GBM cells to EGFR inhibition, suggesting that FOXO3a may serve as an actionable therapeutic target that can be modulated using FDA-approved drugs.

Keywords

Glioblastoma EGFR Erlotinib FOXO3a Trifluoperazine Phenotiazines 

Notes

Acknowledgements

We are grateful to Joan Seoane (Institut de Recerca Hospital Vall d’Hebron, Barcelona), Hans Skovgaard (Rigshospitalet, Oslo) and Isabel Martínez-Lacaci (Hospital Universitario Virgen de la Arrixaca, Murcia) for the gift of human glioma cell lines, to Jon Clardy (Harvard University) for Psammaplysene A and to Eric W-F Lam (Imperial College London) and Wolfgang Link (CNIO, Madrid) for expression plasmids. We are also grateful to Roche for providing erlotinib hydrochloride. The Cancer Cell Biology Laboratory is supported by a Consolider Ingenio grant (CSD2010-00065, Ministerio de Economía y Competitividad, Spain, to G.R., R.V-P., S.FdM. and P.V.) and a grant from Junta de Balears-AECC (to G.R., S.FdM. and P.V.).

Compliance with ethical standards

Informed consent

For tumor sample collection informed consent was obtained from all individual participants included in the study and the study was approved by the ethical committee (Comitè d’Ètica de la Investigació-Illes Balears, CEI-IB, Ref. N° 3198/16).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G.P. Dunn, M.L. Rinne, J. Wykosky, G. Genovese, S.N. Quayle, I.F. Dunn, P.K. Agarwalla, M.G. Chheda, B. Campos, A. Wang, C. Brennan, K.L. Ligon, F. Furnari, W.K. Cavenee, R.A. Depinho, L. Chin, W.C. Hahn, Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26, 756–784 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Staberg, S.R. Michaelsen, R.D. Rasmussen, M. Villingshoj, H.S. Poulsen, P. Hamerlik, Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol 40, 21–32 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Matias, J. Balca-Silva, L.G. Dubois, B. Pontes, V.P. Ferrer, L. Rosario, A. do Carmo, J. Echevarria-Lima, A.B. Sarmento-Ribeiro, M.C. Lopes, V. Moura-Neto, Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol 40, 247–261 (2017)CrossRefGoogle Scholar
  4. 4.
    Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)Google Scholar
  5. 5.
    T.F. Cloughesy, W.K. Cavenee, P.S. Mischel, Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol 9, 1–25 (2014)CrossRefGoogle Scholar
  6. 6.
    M.E. Halatsch, U. Schmidt, J. Behnke-Mursch, A. Unterberg, C.R. Wirtz, Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32, 74–89 (2006)CrossRefGoogle Scholar
  7. 7.
    R. Nishikawa, X.D. Ji, R.C. Harmon, C.S. Lazar, G.N. Gill, W.K. Cavenee, H.J. Huang, A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 91, 7727–7731 (1994)CrossRefGoogle Scholar
  8. 8.
    I.K. Mellinghoff, M.Y. Wang, I. Vivanco, D.A. Haas-Kogan, S. Zhu, E.Q. Dia, K.V. Lu, K. Yoshimoto, J.H. Huang, D.J. Chute, B.L. Riggs, S. Horvath, L.M. Liau, W.K. Cavenee, P.N. Rao, R. Beroukhim, T.C. Peck, J.C. Lee, W.R. Sellers, D. Stokoe, M. Prados, T.F. Cloughesy, C.L. Sawyers, P.S. Mischel, Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353, 2012–2024 (2005)CrossRefGoogle Scholar
  9. 9.
    E. Carrasco-Garcia, M. Saceda, S. Grasso, L. Rocamora-Reverte, M. Conde, A. Gomez-Martinez, P. Garcia-Morales, J.A. Ferragut, I. Martinez-Lacaci, Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines. Exp Cell Res 317, 1476–1489 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Ramis, E. Thomas-Moya, S. Fernandez de Mattos, J. Rodriguez, P. Villalonga, EGFR inhibition in glioma cells modulates rho signaling to inhibit cell motility and invasion and cooperates with Temozolomide to reduce cell growth. PLoS One 7, e38770 (2012)CrossRefGoogle Scholar
  11. 11.
    H.W. Lo, EGFR-targeted therapy in malignant glioma: Novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol 3, 37–52 (2010)CrossRefGoogle Scholar
  12. 12.
    G. Karpel-Massler, C. R. Wirtz, M.E. Halatsch, Drug combinations enhancing the antineoplastic effects of erlotinib in high-grade glioma. Recent Pat Anticancer Drug Discov 6, 384–394 (2011)CrossRefGoogle Scholar
  13. 13.
    Q.W. Fan, K.M. Specht, C. Zhang, D.D. Goldenberg, K.M. Shokat, W.A. Weiss, Combinatorial efficacy achieved through two-point blockade within a signaling pathway-a chemical genetic approach. Cancer Res 63, 8930–8938 (2003)Google Scholar
  14. 14.
    M.Y. Wang, K.V. Lu, S. Zhu, E.Q. Dia, I. Vivanco, G.M. Shackleford, W.K. Cavenee, I.K. Mellinghoff, T.F. Cloughesy, C.L. Sawyers, P.S. Mischel, Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66, 7864–7869 (2006)CrossRefGoogle Scholar
  15. 15.
    Q.W. Fan, C.K. Cheng, T.P. Nicolaides, C.S. Hackett, Z.A. Knight, K.M. Shokat, W.A. Weiss, A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67, 7960–7965 (2007)CrossRefGoogle Scholar
  16. 16.
    B.M. Burgering, A brief introduction to FOXOlogy. Oncogene 27, 2258–2262 (2008)CrossRefGoogle Scholar
  17. 17.
    E.W. Lam, R.E. Francis, M. Petkovic, FOXO transcription factors: Key regulators of cell fate. Biochem Soc Trans 34, 722–726 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Shi, L. Zhang, A. Shen, J. Zhang, Y. Wang, Y. Zhao, L. Zou, Q. Ke, F. He, P. Wang, C. Cheng, G. Shi, Clinical and biological significance of forkhead class box O 3a expression in glioma: Mediation of glioma malignancy by transcriptional regulation of p27kip1. J Neuro-Oncol 98, 57–69 (2010)CrossRefGoogle Scholar
  19. 19.
    J.Y. Yang, M.C. Hung, A new fork for clinical application: Targeting forkhead transcription factors in cancer. Clin Cancer Res 15, 752–757 (2009)CrossRefGoogle Scholar
  20. 20.
    T.C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22, 27–55 (1984)CrossRefGoogle Scholar
  21. 21.
    M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45–e445 (2001)Google Scholar
  22. 22.
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254 (1976)CrossRefGoogle Scholar
  23. 23.
    R.H. Medema, G.J. Kops, J.L. Bos, B.M. Burgering, AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000)CrossRefGoogle Scholar
  24. 24.
    F. Zanella, A. Rosado, B. Garcia, A. Carnero, W. Link, Using multiplexed regulation of luciferase activity and GFP translocation to screen for FOXO modulators. BMC Cell Biol 10, 14 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Schmidt, S. Fernandez de Mattos, A. van der Horst, R. Klompmaker, G.J. Kops, E.W. Lam, B.M. Burgering, R.H. Medema, Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22, 7842–7852 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Essaghir, N. Dif, C.Y. Marbehant, P.J. Coffer, J.B. Demoulin, The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 284, 10334–10342 (2009)CrossRefGoogle Scholar
  27. 27.
    U.B. McGovern, R.E. Francis, B. Peck, S.K. Guest, J. Wang, S.S. Myatt, J. Krol, J.M. Kwok, A. Polychronis, R.C. Coombes, E.W. Lam, Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8, 582–591 (2009)CrossRefGoogle Scholar
  28. 28.
    L. Jiang, X.C. Cao, J.G. Cao, F. Liu, M.F. Quan, X.F. Sheng, K.Q. Ren, Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a. Oncol Lett 5, 1605–1610 (2013)CrossRefGoogle Scholar
  29. 29.
    T.R. Kau, F. Schroeder, S. Ramaswamy, C.L. Wojciechowski, J.J. Zhao, T.M. Roberts, J. Clardy, W.R. Sellers, P.A. Silver, A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4, 463–476 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Fernandez de Mattos, P. Villalonga, J. Clardy, E.W. Lam, FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol Cancer Ther 7, 3237–3246 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Obrador-Hevia, M. Serra-Sitjar, J. Rodriguez, P. Villalonga, S. Fernandez de Mattos, The tumour suppressor FOXO3 is a key regulator of mantle cell lymphoma proliferation and survival. Br J Haematol 156, 334–345 (2012)CrossRefGoogle Scholar
  32. 32.
    E. Berry, J.L. Hardt, J. Clardy, J.R. Lurain, J.J. Kim, Induction of apoptosis in endometrial cancer cells by psammaplysene a involves FOXO1. Gynecol Oncol 112, 331–336 (2009)CrossRefGoogle Scholar
  33. 33.
    A.V. Hoekstra, E.C. Sefton, E. Berry, Z. Lu, J. Hardt, E. Marsh, P. Yin, J. Clardy, D. Chakravarti, S. Bulun, J.J. Kim, Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab 94, 1768–1774 (2009)CrossRefGoogle Scholar
  34. 34.
    J. Sangodkar, N.S. Dhawan, H. Melville, V.J. Singh, E. Yuan, H. Rana, S. Izadmehr, C. Farrington, S. Mazhar, S. Katz, T. Albano, P. Arnovitz, R. Okrent, M. Ohlmeyer, M. Galsky, D. Burstein, D. Zhang, K. Politi, A. Difeo, G. Narla, Targeting the FOXO1/KLF6 axis regulates EGFR signaling and treatment response. J Clin Invest 122, 2637–2651 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Zona, L. Bella, M.J. Burton, G.N. de Moraes, E.W. Lam, FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta 1839, 1316–1322 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Liu, B. Dai, S.H. Kang, K. Ban, F.J. Huang, F.F. Lang, K.D. Aldape, T.X. Xie, C.E. Pelloski, K. Xie, R. Sawaya, S. Huang, FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66, 3593–3602 (2006)CrossRefGoogle Scholar
  37. 37.
    B. Dai, S.H. Kang, W. Gong, M. Liu, K.D. Aldape, R. Sawaya, S. Huang, Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 26, 6212–6219 (2007)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, N. Zhang, B. Dai, M. Liu, R. Sawaya, K. Xie, S. Huang, FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68, 8733–8742 (2008)CrossRefGoogle Scholar
  39. 39.
    Y. Lee, K.H. Kim, D.G. Kim, H.J. Cho, Y. Kim, J. Rheey, K. Shin, Y.J. Seo, Y.S. Choi, J.I. Lee, J. Lee, K.M. Joo, D.H. Nam, FoxM1 promotes Stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One 10, e0137703 (2015)CrossRefGoogle Scholar
  40. 40.
    A.H. Gong, P. Wei, S. Zhang, J. Yao, Y. Yuan, A.D. Zhou, F.F. Lang, A.B. Heimberger, G. Rao, S. Huang, FoxM1 drives a feed-forward STAT3-activation signaling loop that promotes the self-renewal and Tumorigenicity of glioblastoma stem-like cells. Cancer Res 75, 2337–2348 (2015)CrossRefGoogle Scholar
  41. 41.
    K. Joshi, Y. Banasavadi-Siddegowda, X. Mo, S.H. Kim, P. Mao, C. Kig, D. Nardini, R.W. Sobol, L.M. Chow, H.I. Kornblum, R. Waclaw, M. Beullens, I. Nakano, MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells 31, 1051–1063 (2013)CrossRefGoogle Scholar
  42. 42.
    N. Zhang, X. Wu, L. Yang, F. Xiao, H. Zhang, A. Zhou, Z. Huang, S. Huang, FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clin Cancer Res 18, 5961–5971 (2012)CrossRefGoogle Scholar
  43. 43.
    N. Zhang, P. Wei, A. Gong, W.T. Chiu, H.T. Lee, H. Colman, H. Huang, J. Xue, M. Liu, Y. Wang, R. Sawaya, K. Xie, W.K. Yung, R.H. Medema, X. He, S. Huang, FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 20, 427–442 (2011)CrossRefGoogle Scholar
  44. 44.
    K. Xu, H.K. Shu, Transcription factor interactions mediate EGF-dependent COX-2 expression. Mol Cancer Res : MCR 11, 875–886 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Krol, R.E. Francis, A. Albergaria, A. Sunters, A. Polychronis, R.C. Coombes, E.W. Lam, The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther 6, 3169–3179 (2007)CrossRefGoogle Scholar
  46. 46.
    S. Fernandez de Mattos, A. Essafi, I. Soeiro, A.M. Pietersen, K.U. Birkenkamp, C.S. Edwards, A. Martino, B.H. Nelson, J.M. Francis, M.C. Jones, J.J. Brosens, P.J. Coffer, E.W. Lam, FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol 24, 10058–10071 (2004)CrossRefGoogle Scholar
  47. 47.
    A. Sunters, S. Fernandez de Mattos, M. Stahl, J.J. Brosens, G. Zoumpoulidou, C.A. Saunders, P.J. Coffer, R.H. Medema, R.C. Coombes, E.W. Lam, FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278, 49795–49805 (2003)CrossRefGoogle Scholar
  48. 48.
    F. Zhao, E.W. Lam, Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance. Front Med 6, 376–380 (2012)CrossRefGoogle Scholar
  49. 49.
    J.E. Allen, G. Krigsfeld, P.A. Mayes, L. Patel, D.T. Dicker, A.S. Patel, N.G. Dolloff, E. Messaris, K.A. Scata, W. Wang, J.Y. Zhou, G.S. Wu, W.S. El-Deiry, Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 5, 171ra117 (2013)CrossRefGoogle Scholar
  50. 50.
    J. Sunayama, A. Sato, K. Matsuda, K. Tachibana, E. Watanabe, S. Seino, K. Suzuki, Y. Narita, S. Shibui, K. Sakurada, T. Kayama, A. Tomiyama, C. Kitanaka, FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 29, 1327–1337 (2011)Google Scholar
  51. 51.
    Z. Qian, L. Ren, D. Wu, X. Yang, Z. Zhou, Q. Nie, G. Jiang, S. Xue, W. Weng, Y. Qiu, Y. Lin, Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis. Int J Cancer 140, 2792–2804 (2017)CrossRefGoogle Scholar
  52. 52.
    F.C. Schroeder, T.R. Kau, P.A. Silver, J. Clardy, The psammaplysenes, specific inhibitors of FOXO1a nuclear export. J Nat Prod 68, 574–576 (2005)CrossRefGoogle Scholar
  53. 53.
    S.H. Curry, R.B. Stewart, P.K. Springer, J.E. Pope, Plasma-trifluoperazine concentrations during high dose therapy. Lancet 1, 395–396 (1981)CrossRefGoogle Scholar
  54. 54.
    B.M. Cohen, J.F. Lipinski, C. Waternaux, A fixed dose study of the plasma concentration and clinical effects of thioridazine and its major metabolites. Psychopharmacology 97, 481–488 (1989)CrossRefGoogle Scholar
  55. 55.
    I. Gil-Ad, B. Shtaif, Y. Levkovitz, M. Dayag, E. Zeldich, A. Weizman, Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: Clinical relevance and possible application for brain-derived tumors. J Mol Neurosci : MN 22, 189–198 (2004)CrossRefGoogle Scholar
  56. 56.
    H.W. Cheng, Y.H. Liang, Y.L. Kuo, C.P. Chuu, C.Y. Lin, M.H. Lee, A.T. Wu, C.T. Yeh, E.I. Chen, J. Whang-Peng, C.L. Su, C.Y. Huang, Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis 6, e1753 (2015)CrossRefGoogle Scholar
  57. 57.
    S.Y. Shin, K.S. Lee, Y.K. Choi, H.J. Lim, H.G. Lee, Y. Lim, Y.H. Lee, The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 34, 2080–2089 (2013)CrossRefGoogle Scholar
  58. 58.
    J.K. Lee, D.H. Nam, J. Lee, Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncol Lett 11, 1281–1286 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Colomer, A.A. Schmitt, E.J. Toone, A.R. Means, Identification and inhibitory properties of a novel ca(2+)/calmodulin antagonist. Biochemistry 49, 4244–4254 (2010)CrossRefGoogle Scholar
  60. 60.
    F. Zanella, A. Rosado, B. Garcia, A. Carnero, W. Link, Chemical genetic analysis of FOXO nuclear-cytoplasmic shuttling by using image-based cell screening. Chembiochem 9, 2229–2237 (2008)CrossRefGoogle Scholar
  61. 61.
    J. Li, S. Zhu, D. Kozono, K. Ng, D. Futalan, Y. Shen, J.C. Akers, T. Steed, D. Kushwaha, M. Schlabach, B.S. Carter, C.H. Kwon, F. Furnari, W. Cavenee, S. Elledge, C.C. Chen, Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 5, 882–893 (2014)Google Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  1. 1.Cancer Cell Biology Laboratory, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS)Universitat de les Illes Balears, and Institut d’Investigació Sanitària Illes Balears (IdISBa)PalmaSpain
  2. 2.Cellomics Unit, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS)Universitat de les Illes BalearsPalmaSpain
  3. 3.Departament de QuímicaUniversitat de les Illes BalearsPalmaSpain
  4. 4.Department of NeurosurgeryHospital Universitari Son EspasesPalmaSpain
  5. 5.Departament de Biologia Fonamental i Ciències de la SalutUniversitat de les Illes BalearsPalmaSpain

Personalised recommendations