Advertisement

Leptin-induced signaling pathways in cancer cell migration and invasion

  • Ahmad Ghasemi
  • Jafar Saeidi
  • Mohsen Azimi-Nejad
  • Seyed Isaac HashemyEmail author
Review
  • 52 Downloads

Abstract

Background

Increasing evidence indicates that obesity is associated with tumor development and progression. Leptin is an adipocyte-related hormone with a key role in energy metabolism and whose circulating levels are elevated in obesity. The effect of leptin on cancer progression and metastasis and its underlying mechanisms are still unclear. Leptin can impact various steps in tumor metastasis, including epithelial-mesenchymal transition, cell adhesion to the extracellular matrix (ECM), and proteolysis of ECM components. To do so, leptin binds to its receptor (OB-Rb) to activate signaling pathways and downstream effectors that participate in tumor cell invasion as well as distant metastasis.

Conclusions

In this review, we describe metastasis steps in detail and characterize metastasis-related molecules activated by leptin, which may help to develop a roadmap that guides future work. In addition, we conclude that a profound understanding of the fundamental molecular processes that contribute to leptin-induced metastasis may pave the way for the development of new prognostic molecules and appropriate approaches to the treatment of obesity-related cancers.

Keywords

Obesity Leptin Cancer Cell migration Cell invasion Metastasis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    I. Vucenik, J.P. Stains, Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann. N. Y. Acad. Sci. 1271, 37–43 (2012)CrossRefGoogle Scholar
  2. 2.
    E.-J. Choi, H.-R. Kim, J.-H. Kie, B.-I. Moon and J.-Y. Seoh, Attenuation of obesity and related metabolic disorders by the individual or combination treatment with IL-2/anti-IL-2 complex and hyperbaric oxygen. bioRxiv. 351841 (2018)Google Scholar
  3. 3.
    M.I. Goran, G.D. Ball, M.L. Cruz, Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J. Clin. Endocrinol. Metab. 88, 1417–1427 (2003)CrossRefGoogle Scholar
  4. 4.
    A. Khodabakhshi, M. Ghayour-Mobarhan, H. Rooki, R. Vakili, S. Hashemy, S. Mirhafez, M. Shakeri, R. Kashanifar, R. Pourbafarani, H. Mirzaei, Comparative measurement of ghrelin, leptin, adiponectin, EGF and IGF-1 in breast milk of mothers with overweight/obese and normal-weight infants. Eur. J. Clin. Nutr. 69, 614–618 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Mazzarella, Why does obesity promote cancer? Ecancermedicalscience 9, 554 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–386 (2015)CrossRefGoogle Scholar
  7. 7.
    G.A. Colditz, L.L. Peterson, Obesity and cancer: evidence, impact, and future directions. Clin. Chem. Clinchem. 64, 154–162 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Fang, J. Wei, X. He, J. Lian, D. Han, P. An, T. Zhou, S. Liu, F. Wang, J. Min, Q uantitative association between body mass index and the risk of cancer: A global meta-analysis of prospective cohort studies. Int. J. Cancer 143, 1595–1603 (2018)CrossRefGoogle Scholar
  9. 9.
    M.A. Lichtman, Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. The Oncologist 15, 1083–1101 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Ladhani, B. Empringham, K.-W. Wang, C. Portwine, L. Banfield, R.J. de Souza, L. Thabane, M.C. Samaan, Overweight and obesity management strategies in survivors of paediatric acute lymphoblastic leukaemia: a systematic review protocol. BMJ Open 8, e022530 (2018)Google Scholar
  11. 11.
    A. Tarasiuk, P. Mosińska, J. Fichna, The mechanisms linking obesity to colon cancer: an overview. Obes. Res. Clin. Pract. 12, 251–259 (2018)CrossRefGoogle Scholar
  12. 12.
    S.G. Krishna, H. Hussan, Z. Cruz-Monserrate, L.F. Conteh, K. Mumtaz, D.L. Conwell, A review of the impact of obesity on common gastrointestinal malignancies. Integr. Cancer Sci. Ther. 4 (2017).  https://doi.org/10.15761/ICST.1000223
  13. 13.
    P. Gild, B. Ehdaie, L.A. Kluth, Effect of obesity on bladder cancer and renal cell carcinoma incidence and survival. Curr. Opin. Urol. 27, 409–414 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Sharma, N. Saxena, P. Vertino, F. Anania, Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endocr. Relat. Cancer 13, 629–640 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Kitson, J. Duffy, N. Ryan, M. MacKintosh, E. Crosbie, Interventions for weight reduction in obesity to improve survival in women with endometrial cancer. Cochrane Database Syst. Rev. (2018).  https://doi.org/10.1002/14651858.CD012513.pub2
  16. 16.
    I. Huang-Doran, S. Franks, Genetic rodent models of obesity-associated ovarian dysfunction and subfertility: insights into polycystic ovary syndrome. Front. Endocrinol. 7, 53 (2016).  https://doi.org/10.3389/fendo.2016.00053 CrossRefGoogle Scholar
  17. 17.
    L. Gan, Z. Liu, C. Sun, Obesity linking to hepatocellular carcinoma: A global view. Biochim. Biophys. Acta Rev. Cancer 1869, 97–102 (2018)CrossRefGoogle Scholar
  18. 18.
    D. Li, J.S. Morris, J. Liu, M.M. Hassan, R.S. Day, M.L. Bondy, J.L. Abbruzzese, Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA. 301, 2553–2562 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Xu, X. Jung, O.J. Hines, G. Eibl, Y. Chen, Obesity and pancreatic cancer: overview of epidemiology and potential prevention by weight loss. Pancreas 47, 158–162 (2018)CrossRefGoogle Scholar
  20. 20.
    R.J. MacInnis, D.R. English, Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control. 17, 989–1003 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Bandini, G. Gandaglia, A. Briganti, Obesity and prostate cancer. Curr. Opin. Urol. 27, 415–421 (2017)CrossRefGoogle Scholar
  22. 22.
    E.H.B.C.C. Group, Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl. Cancer Inst. 95, 1218–1226 (2003)Google Scholar
  23. 23.
    Y. Geng, J. Wang, R. Wang, K. Wang, Y. Xu, G. Song, C. Wu, Y. Yin, Leptin and HER-2 are associated with gastric cancer progression and prognosis of patients. Biomed. Pharmacother. 66, 419–424 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Mahbouli, A. Der Vartanian, S. Ortega, S. Rougé, M.-P. Vasson, A. Rossary, Leptin induces ROS via NOX5 in healthy and neoplastic mammary epithelial cells. Oncol. Rep. 38, 3254–3264 (2017)CrossRefGoogle Scholar
  25. 25.
    H.G. Kim, S.W. Jin, Y.A. Kim, T. Khanal, G.H. Lee, S.J. Kim, S. Dal Rhee, Y.C. Chung, Y.J. Hwang, T.C. Jeong, Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells. Food Chem. Toxicol. 106, 232–241 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Hosney, S. Sabet, M. El-Shinawi, K.M. Gaafar, M.M. Mohamed, Leptin is overexpressed in the tumor microenvironment of obese patients with estrogen receptor positive breast cancer. Exp. Ther. Med. 13, 2235–2246 (2017)CrossRefGoogle Scholar
  27. 27.
    S.M. Louie, L.S. Roberts, D.K. Nomura, Mechanisms linking obesity and cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831, 1499–1508 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Bjorbæk, B.B. Kahn, Leptin signaling in the central nervous system and the periphery. Recent Prog. Horm. Res. 59, 305–332 (2004)CrossRefGoogle Scholar
  29. 29.
    D. Dutta, S. Ghosh, K. Pandit, P. Mukhopadhyay, S. Chowdhury, Leptin and cancer: Pathogenesis and modulation. Ind. J. Endocrin. Metabolism 16, S596 (2012)CrossRefGoogle Scholar
  30. 30.
    M.N. VanSaun, Molecular pathways: adiponectin and leptin signaling in cancer. Clin. Cancer Res. 19, 1926–1932 (2013)CrossRefGoogle Scholar
  31. 31.
    N.K. Saxena, L. Taliaferro-Smith, B.B. Knight, D. Merlin, F.A. Anania, R.M. O'Regan, D. Sharma, Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res. 68, 9712–9722 (2008)CrossRefGoogle Scholar
  32. 32.
    V.K. Clements, T. Long, R. Long, C. Figley, D. Smith, S. Ostrand-Rosenberg, Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J. Leukoc. Biol. 103, 395–407 (2018)CrossRefGoogle Scholar
  33. 33.
    T.N. Seyfried, L.C. Huysentruyt, On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43 (2013)CrossRefGoogle Scholar
  34. 34.
    A.W. Lambert, D.R. Pattabiraman, R.A. Weinberg, Emerging biological principles of metastasis. Cell 168, 670–691 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Voulgari, A. Pintzas, Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta Rev. Cancer 1796, 75–90 (2009)Google Scholar
  36. 36.
    J.H. Tsai and J. Yang, Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192–2206 (2013)Google Scholar
  37. 37.
    M.J. Wheelock, Y. Shintani, M. Maeda, Y. Fukumoto, K.R. Johnson, Cadherin switching. J. Cell Sci. 121, 727–735 (2008)Google Scholar
  38. 38.
    D.A. Lauffenburger, A.F. Horwitz, Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)Google Scholar
  39. 39.
    G. Bozzuto, P. Ruggieri, A. Molinari, Molecular aspects of tumor cell migration and invasion. Ann. Ist. Super. Sanita. 46, 66–80 (2010)Google Scholar
  40. 40.
    T.D. Pollard, G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)Google Scholar
  41. 41.
    K. O'Connor, M. Chen, Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases 4, 141–147 (2013)Google Scholar
  42. 42.
    B. Davidson, R. Reich, B. Risberg, J. Nesland, The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh. Patol. 64, 47–53 (2002)Google Scholar
  43. 43.
    A.M. Weaver, Invadopodia: specialized cell structures for cancer invasion. Clin. Exp. 23, 97–105 (2006)Google Scholar
  44. 44.
    M. Duffy, (Portland Press Limited, 2002),Google Scholar
  45. 45.
    Y. Teng, J.L. Ross, J.K. Cowell, The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. Jak-Stat. 3, e28086 (2014)Google Scholar
  46. 46.
    B. Li, W.W. Xu, A.K.Y. Lam, Y. Wang, H.-F. Hu, X.Y. Guan, Y.R. Qin, N. Saremi, S.W. Tsao, Q.-Y. He, Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget 8, 38755 (2017)Google Scholar
  47. 47.
    A.S. Dhillon, S. Hagan, O. Rath, W. Kolch, MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007)Google Scholar
  48. 48.
    F. Seif, M. Khoshmirsafa, H. Aazami, M. Mohsenzadegan, G. Sedighi, M. Bahar, The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Comm. Signal. 15, 23 (2017)Google Scholar
  49. 49.
    P. Liu, H. Cheng, T.M. Roberts, J.J. Zhao, Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009)Google Scholar
  50. 50.
    K.L. Houseknecht, C.A. Baile, R.L. Matteri, M.E. Spurlock, The biology of leptin: a review. J. Anim. Sci. 76, 1405–1420 (1998)Google Scholar
  51. 51.
    C.A. Siegrist-Kaiser, V. Pauli, C.E. Juge-Aubry, O. Boss, A. Pernin, W.W. Chin, I. Cusin, F. Rohner-Jeanrenaud, A.G. Burger, J. Zapf, Direct effects of leptin on brown and white adipose tissue. J. Clin. Invest. 100, 2858–2864 (1997)Google Scholar
  52. 52.
    S. Blüher, C.S. Mantzoros, Leptin in humans: lessons from translational research. Am. J. Clin. Nutrition 89, 991S–997S (2009)Google Scholar
  53. 53.
    S. Margetic, C. Gazzola, G. Pegg, R. Hill, Leptin: a review of its peripheral actions and interactions. Int. J. Obes. Relat. Metab. Disord. 26, 1407–1433 (2002)Google Scholar
  54. 54.
    C.S. Mantzoros, The role of leptin in human obesity and disease: a review of current evidence. Ann. Intern. Med. 130, 671–680 (1999)Google Scholar
  55. 55.
    H. Shimizu, Y. Shimomura, R. Hayashi, K. Ohtani, N. Sato, T. Futawatari, M. Mori, Serum leptin concentration is associated with total body fat mass, but not abdominal fat distribution. Int. J. Obes. Relat. Metab. Disord. 21, 536–541 (1997)Google Scholar
  56. 56.
    R.V. Considine, M.K. Sinha, M.L. Heiman, A. Kriauciunas, T.W. Stephens, M.R. Nyce, J.P. Ohannesian, C.C. Marco, L.J. McKee, T.L. Bauer, Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996)Google Scholar
  57. 57.
    J. Licinio, C. Mantzoros, A.B. Negrão, G. Cizza, M.-L. Wong, P.B. Bongiorno, G.P. Chrousos, B. Karp, C. Allen, J.S. Flier, Human leptin levels are pulsatile and inversely related to pituitary–ardenal function. Nat. Med. 3, 575–579 (1997)Google Scholar
  58. 58.
    N.K. Saxena, D. Sharma, X. Ding, S. Lin, F. Marra, D. Merlin, F.A. Anania, Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 67, 2497–2507 (2007)Google Scholar
  59. 59.
    Y. Ding, Y. Cao, B. Wang, L. Wang, Y. Zhang, D. Zhang, X. Chen, M. Li, C. Wang, APPL1-mediating leptin signaling contributes to proliferation and migration of cancer cells. PLoS ONE 11, e0166172 (2016)Google Scholar
  60. 60.
    H. Feng, Q. Liu, N. Zhang, L. Zheng, M. Sang, J. Feng, J. Zhang, X. Wu, B. Shan, Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol. Res. 21, 165–171 (2014)Google Scholar
  61. 61.
    A.L. Strong, J.F. Ohlstein, B.A. Biagas, L.V. Rhodes, D.T. Pei, H.A. Tucker, C. Llamas, A.C. Bowles, M.F. Dutreil, S. Zhang, Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 17, 112 (2015)Google Scholar
  62. 62.
    S.D.H. Ahmed, F. Idrees, M. Ahsan, A. Khanam, N. Sultan, N. Akhter, Association of serum leptin with serum estradiol in relation to breast carcinogenesis: a comparative case-control study between pre-and postmenopausal women. Turkish J. Med. Sciences 48, 305–310 (2018)Google Scholar
  63. 63.
    L.W. Bowers, E.L. Rossi, S.B. McDonell, S.S. Doerstling, S.A. Khatib, C.G. Lineberger, J.E. Albright, X. Tang, S.D. Hursting, Leptin signaling mediates obesity-associated CSC enrichment and EMT in preclinical TNBC models. Mol. Cancer Res. 16, 869–879 (2018)Google Scholar
  64. 64.
    P.S. Thiagarajan, Q. Zheng, M. Bhagrath, E.E. Mulkearns-Hubert, M.G. Myers, J.D. Lathia, O. Reizes, STAT3 activation by leptin receptor is essential for TNBC stem cell maintenance. Endocr. Relat. Cancer 24, 415–426 (2017)Google Scholar
  65. 65.
    H. Cao, Y. Huang, L. Wang, H. Wang, X. Pang, K. Li, W. Dang, H. Tang, L. Wei, M. Su, Leptin promotes migration and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages. Oncotarget 7, 65441 (2016)Google Scholar
  66. 66.
    R. Price, D. Cavazos, R. De Angel, S. Hursting, Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells. Prostate Cancer Prostatic Dis. 15, 135–143 (2012)Google Scholar
  67. 67.
    K.-W. Yoon, S.-Y. Park, J.-Y. Kim, S.-M. Lee, C.H. Park, S.-B. Cho, W.-S. Lee, Y.-E. Joo, J.H. Lee, H.S. Kim, Leptin-induced adhesion and invasion in colorectal cancer cell lines. Oncol. Rep. 31, 2493–2498 (2014)Google Scholar
  68. 68.
    J. Oba, W. Wei, J.E. Gershenwald, M.M. Johnson, C.M. Wyatt, J.A. Ellerhorst, E.A. Grimm, Elevated serum leptin levels are associated with an increased risk of sentinel lymph node metastasis in cutaneous melanoma. Medicine (Baltimore) 95, e3073 (2016)Google Scholar
  69. 69.
    X. Wei, Y. Liu, C. Gong, T. Ji, X. Zhou, T. Zhang, D. Wan, S. Xu, P. Jin, X. Yang, Targeting leptin as a therapeutic strategy against ovarian cancer peritoneal metastasis. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 17, 1093–1101 (2017)Google Scholar
  70. 70.
    F. Campo-Verde-Arbocco, J.D. López-Laur, L.R. Romeo, N. Giorlando, F.A. Bruna, D.E. Contador, G. López-Fontana, F.E. Santiano, C.V. Sasso, L.E. Zyla, Human renal adipose tissue induces the invasion and progression of renal cell carcinoma. Oncotarget 8, 94223 (2017)Google Scholar
  71. 71.
    Y. Huang, Q. Jin, M. Su, F. Ji, N. Wang, C. Zhong, Y. Jiang, Y. Liu, Z. Zhang, J. Yang, Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. Cell. Oncol. 40, 537–547 (2017)Google Scholar
  72. 72.
    K. Li, L. Wei, Y. Huang, Y. Wu, M. Su, X. Pang, N. Wang, F. Ji, C. Zhong, T. Chen, Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int. J. Oncol. 48, 2479–2487 (2016)Google Scholar
  73. 73.
    A. Meerson, H. Yehuda, Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells. BMC Cancer. 16, 882 (2016)Google Scholar
  74. 74.
    I. Tourkantonis, M. Kiagia, E. Peponi, S. Tsagouli, K.N. Syrigos, The role of leptin in cancer pathogenesis. J. Cancer Ther. 4, 640 (2013)Google Scholar
  75. 75.
    G. Newman, R.R. Gonzalez-Perez, Leptin–cytokine crosstalk in breast cancer. Mol. Cell. Endocrinol. 382, 570–582 (2014)Google Scholar
  76. 76.
    L.A. Tartaglia, The leptin receptor. J. Biol. Chem. 272, 6093–6096 (1997)Google Scholar
  77. 77.
    G. Frühbeck, Intracellular signalling pathways activated by leptin. Biochem. J. 393, 7–20 (2006)Google Scholar
  78. 78.
    D. Shida, J. Kitayama, K. Mori, T. Watanabe, H. Nagawa, Transactivation of epidermal growth factor receptor is involved in leptin-induced activation of janus-activated kinase 2 and extracellular signal–regulated kinase 1/2 in human gastric cancer cells. Cancer Res. 65, 9159–9163 (2005)Google Scholar
  79. 79.
    J.W. Park, C.R. Han, L. Zhao, M. Willingham, S.-y. Cheng, Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr. Relat. Cancer. ERC-15-0417 (2015)Google Scholar
  80. 80.
    I. Haque, A. Ghosh, S. Acup, S. Banerjee, K. Dhar, A. Ray, S. Sarkar, S. Kambhampati, S.K. Banerjee, Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 18, 99 (2018)Google Scholar
  81. 81.
    J. Kumar, H. Fang, D.R. McCulloch, T. Crowley, A.C. Ward, Leptin receptor signaling via Janus kinase 2/Signal transducer and activator of transcription 3 impacts on ovarian cancer cell phenotypes. Oncotarget 8, 93530 (2017)Google Scholar
  82. 82.
    H. Zahid, K. Subbaramaiah, N.M. Iyengar, X.K. Zhou, I.-C. Chen, P. Bhardwaj, A. Gucalp, M. Morrow, C.A. Hudis, A.J. Dannenberg, Leptin regulation of the p53-HIF1α/PKM2-aromatase axis in breast adipose stromal cells: a novel mechanism for the obesity–breast cancer link. Int. J. Obes. 42, 711 (2018)Google Scholar
  83. 83.
    C. Giordano, F. Chemi, S. Panza, I. Barone, D. Bonofiglio, M. Lanzino, A. Cordella, A. Campana, A. Hashim, P. Rizza, Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget 7, 1262 (2016)Google Scholar
  84. 84.
    S. Zhang, J. Jiang, Z. Chen, Y. Wang, W. Tang, C. Liu, L. Liu, Y. Chen, investigation of LEP and LEPR polymorphisms with the risk of hepatocellular carcinoma: a case–control study in eastern chinese han population. OncoTargets and Therapy 11, 2083 (2018)Google Scholar
  85. 85.
    C.-R. Liu, Q. Li, C. Hou, H. Li, P. Shuai, M. Zhao, X.-R. Zhong, Z.-P. Xu, J.-Y. Li, Changes in body mass index, leptin, and leptin receptor polymorphisms and breast cancer risk. DNA Cell Biol. 37, 182–188 (2018)Google Scholar
  86. 86.
    H. Qiu, X. Lin, W. Tang, C. Liu, Y. Chen, H. Ding, M. Kang, S. Chen, Investigation of TCF7L2, LEP and LEPR polymorphisms with esophageal squamous cell carcinomas. Oncotarget 8, 109107 (2017)Google Scholar
  87. 87.
    J. Bieńkiewicz, H. Romanowicz, A. Malinowski, B. Smolarz, Association of single nucleotide polymorphism-2548 G/A (rs12112075) of leptin gene with endometrial cancer and uterine leiomyomas. Eur. J. Obstet. Gynecol. Reprod. Biol. 218, 113–118 (2017)Google Scholar
  88. 88.
    H. Luan, H. Zhang, Y. Li, P. Wang, L. Cao, H. Ma, Q. Cui, G. Tian, Association of two obesity-related gene polymorphisms LEPG2548A rs7799039 and LEPRQ223R rs1137101 with the risk of breast cancer. Oncotarget 8, 59333 (2017)Google Scholar
  89. 89.
    X. Yuan, Z. Xu, C. Liu, L. Yan, P. Tao, P. Xiong, Q. Li, M. Zhou, H. Li, M. Zhao, Study of the association between polymorphism of persistent obesity, human leptin gene/leptin receptor gene and molecular subtypes of breast cancer. Zhonghua yu fang yi xue za zhi (Chinese Journal of Preventive Medicine) 51, 533–538 (2017)Google Scholar
  90. 90.
    T. Amer, R. El-Baz, A.-R. Mokhtar, S. El-Shaer, R. Elshazli and A. Settin, Genetic polymorphisms of IL-23R (rs7517847) and LEP (rs7799039) among Egyptian patients with hepatocellular carcinoma. Arch. Physiol. Biochem. 123, 279–285 (2017)Google Scholar
  91. 91.
    M.A.-B. El-Hussiny, M.A. Atwa, W.E. Rashad, D.A. Shaheen, N.M. Elkady, Leptin receptor Q223R polymorphism in Egyptian female patients with breast cancer. Contemp. Oncol. 21, 42 (2017)Google Scholar
  92. 92.
    A. Méndez-Hernández, M.P. Gallegos-Arreola, H. Moreno-Macías, J.E. Fematt, R. Pérez-Morales, LEP rs7799039, LEPR rs1137101, and ADIPOQ rs2241766 and 1501299 polymorphisms are associated with obesity and chemotherapy response in Mexican women with breast cancer. Clin. Breast Cancer 17, 453–462 (2017)Google Scholar
  93. 93.
    C. Rodrigo, K.H. Tennekoon, E.H. Karunanayake, K. De Silva, I. Amarasinghe, A. Wijayasiri, Circulating leptin, soluble leptin receptor, free leptin index, visfatin and selected leptin and leptin receptor gene polymorphisms in sporadic breast cancer. Endocr. J. 64, 393–401 (2017)Google Scholar
  94. 94.
    D.R. Farias, A.B. Franco-Sena, F. Rebelo, G.F. Salles, C.J. Struchiner, M.C. Martins, G. Kac, Polymorphisms of leptin (G2548A) and leptin receptor (Q223R and K109R) genes and blood pressure during pregnancy and the postpartum period: A Cohort. Am. J. Hypertens. 30, 130–140 (2017)Google Scholar
  95. 95.
    A. Babic, Y. Bao, Z.R. Qian, C. Yuan, E.L. Giovannucci, H. Aschard, P. Kraft, L.T. Amundadottir, R.Z. Stolzenberg-Solomon, V. Morales-Oyarvide, Pancreatic cancer risks associated with prediagnostic plasma levels of leptin and leptin receptor genetic polymorphisms. Cancer Res. 1699, 7160–7167 (2016)Google Scholar
  96. 96.
    T. Mahmoudi, H. Farahani, H. Nobakht, R. Dabiri, M.R. Zali, Genetic variations in leptin and leptin receptor and susceptibility to colorectal cancer and obesity. Iran J Cancer Prev. 9, e7013 (2016)Google Scholar
  97. 97.
    P. Rodrigues, L. Maia, M. Santos, G. Peterle, L. Alves, J. Takamori, R. Souza, W. Barbosa, A. Mercante, F. Nunes, Leptin receptor expression and Gln223Arg polymorphism as prognostic markers in oral and oropharyngeal cancer. Genet. Mol. Res. 14, 14979–14988 (2015)Google Scholar
  98. 98.
    A.M. Mendonsa, M.C. Chalfant, L.D. Gorden, M.N. VanSaun, Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS ONE 10, e0126686 (2015)Google Scholar
  99. 99.
    M. Szyszka, M. Tyczewska, P. Milecka, K. Jopek, P. Celichowski, L.K. Malendowicz, M. Rucinski, Effects of leptin on leptin receptor isoform expression and proliferative activity in human normal prostate and prostate cancer cell lines. Oncol. Rep. 39, 182–192 (2018)Google Scholar
  100. 100.
    R. Sultana, A.C. Kataki, B.B. Borthakur, T.K. Basumatary, S. Bose, Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene. 621, 51–58 (2017)Google Scholar
  101. 101.
    Y. Pan, F. Zhou, C. He, L. Hui, T. Huang, Y. Wei, Leptin-LepRb expressed in gastric cancer patients and related to cancer-related depression. Biomed. Res. Int. 2017, 1–7 (2017)Google Scholar
  102. 102.
    Y.-C. Lee, W.-J. Wu, H.-H. Lin, W.-M. Li, C.-N. Huang, W.-C. Hsu, L.-L. Chang, C.-C. Li, H.-C. Yeh, C.-F. Li, Prognostic value of leptin receptor overexpression in upper tract urothelial carcinomas in Taiwan. Clin. Genitourin. Cancer 15, e653–e659 (2017)Google Scholar
  103. 103.
    H. Feng, P. Guo, J. Wang, Q. Liu, J. Xu, H. Yang, J. Zhang, Association of the expression of leptin and leptin receptor with bone metastasis in pulmonary adenocarcinoma. Zhonghua zhong liu za zhi (Chinese Journal of Oncology) 38, 840–844(2016)Google Scholar
  104. 104.
    N. Saetang, T. Boonpipattanapong, A. Palanusont, W. Maneechay, S. Sangkhathat, Alteration of leptin and adiponectin in multistep colorectal tumorigenesis. Asian Pac. J. Cancer Prev. 17, 2119–2123 (2016)Google Scholar
  105. 105.
    S. Kato, L. Abarzua-Catalan, C. Trigo, A. Delpiano, C. Sanhueza, K. García, C. Ibañez, K. Hormazábal, D. Diaz, J. Brañes, Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women. Oncotarget 6, 21100 (2015)Google Scholar
  106. 106.
    S. Uddin, R. Bu, M. Ahmed, J. Abubaker, F. Al-Dayel, P. Bavi, K.S. Al-Kuraya, Overexpression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer. Mol. Cancer. 8, 74 (2009)Google Scholar
  107. 107.
    Y. Fan, Y. Gan, Y. Shen, X. Cai, Y. Song, F. Zhao, M. Yao, J. Gu, H. Tu, Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget 6, 16120 (2015)Google Scholar
  108. 108.
    A. Horiguchi, M. Sumitomo, J. Asakuma, T. Asano, R. Zheng, T. Asano, D.M. Nanus, M. Hayakawa, Increased serum leptin levels and over expression of leptin receptors are associated with the invasion and progression of renal cell carcinoma. J. Urol. 176, 1631–1635 (2006)Google Scholar
  109. 109.
    M. Ishikawa, J. Kitayama, H. Nagawa, Expression pattern of leptin and leptin receptor (OB-R) in human gastric cancer. World J. Gastroenterol. 12, 5517 (2006)Google Scholar
  110. 110.
    N. Erkasap, M. Ozkurt, S. Erkasap, F. Yasar, K. Uzuner, E. Ihtiyar, S. Uslu, M. Kara, O. Bolluk, Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer. Braz. J. Med. Biol. Res. 46, 306–310 (2013)Google Scholar
  111. 111.
    Y.L. Fan, X.Q. Li, Expression of leptin and its receptor in thyroid carcinoma: distinctive prognostic significance in different subtypes. Clin. Endocrinol. 83, 261–267 (2015)Google Scholar
  112. 112.
    C. Garofalo, M. Koda, S. Cascio, M. Sulkowska, L. Kanczuga-Koda, J. Golaszewska, A. Russo, S. Sulkowski, E. Surmacz, Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin. Cancer Res. 12, 1447–1453 (2006)Google Scholar
  113. 113.
    M. Ishikawa, J. Kitayama, H. Nagawa, Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res. 10, 4325–4331 (2004)Google Scholar
  114. 114.
    Y.-J. Xu, Y.-F. Shao, X. Zhao, Y.-T. Geng, K. Wang, Y.-M. Yin, Expression and clinical significance of leptin, the functional receptor of leptin (OB-Rb) and HER-2 in non-small-cell lung cancer: a retrospective analysis. J. Cancer Res. Clin. Oncol. 137, 1841 (2011)Google Scholar
  115. 115.
    U.H. Frixen, J. Behrens, M. Sachs, G. Eberle, B. Voss, A. Warda, D. Löchner, W. Birchmeier, E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113, 173–185 (1991)Google Scholar
  116. 116.
    K. Strumane, G. Berx, F. Van Roy, in Cell adhesion, (Springer, 2004), p. 69–103Google Scholar
  117. 117.
    F. Van Roy, G. Berx, The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756–3788 (2008)Google Scholar
  118. 118.
    B.M. Gumbiner, Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005)Google Scholar
  119. 119.
    W. Shih, S. Yamada, N-cadherin as a key regulator of collective cell migration in a 3D environment. Cell Adh. Migr. 6, 513–517 (2012)Google Scholar
  120. 120.
    W. Shih, S. Yamada, N-cadherin-mediated cell-cell adhesion promotes cell migration in a three-dimensional matrix. J. Cell Sci. 125, 3661–3670 (2012)Google Scholar
  121. 121.
    S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014)Google Scholar
  122. 122.
    A.K. Mishra, C.R. Parish, M.-L. Wong, J. Licinio, A.C. Blackburn, Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer. PLoS ONE 12, e0178454 (2017)Google Scholar
  123. 123.
    L. Wei, K. Li, X. Pang, B. Guo, M. Su, Y. Huang, N. Wang, F. Ji, C. Zhong, J. Yang, Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J. Exp. Clin. Cancer Res. 35, 166 (2016)Google Scholar
  124. 124.
    L. Wang, C. Tang, H. Cao, K. Li, X. Pang, L. Zhong, W. Dang, H. Tang, Y. Huang, L. Wei, Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol. Ther. 16, 1220–1230 (2015)Google Scholar
  125. 125.
    D. Yan, D. Avtanski, N.K. Saxena, D. Sharma, Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3-and MTA1/Wnt1 protein-dependent pathways. J. Biol. Chem. 287, 8598–8612 (2012)Google Scholar
  126. 126.
    E. Trevellin, M. Scarpa, A. Carraro, F. Lunardi, A. Kotsafti, A. Porzionato, L. Saadeh, M. Cagol, R. Alfieri, U. Tedeschi, Esophageal adenocarcinoma and obesity: peritumoral adipose tissue plays a role in lymph node invasion. Oncotarget 6, 11203 (2015)Google Scholar
  127. 127.
    K. Kushiro, N.P. Núñez, Ob/ob serum promotes a mesenchymal cell phenotype in B16BL6 melanoma cells. Clin. Exp. Metastasis 28, 877–886 (2011)Google Scholar
  128. 128.
    Z. Wang, Y. Li, D. Kong, F. H Sarkar, The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr. Drug Targets 11, 745–751 (2010)Google Scholar
  129. 129.
    Y. Li, J. Ma, X. Qian, Q. Wu, J. Xia, L. Miele, F. H Sarkar, Z. Wang, Regulation of EMT by Notch signaling pathway in tumor progression. Curr. Cancer Drug Targets 13, 957–962 (2013)Google Scholar
  130. 130.
    A. Harbuzariu, R.R. Gonzalez-Perez, Leptin-Notch axis impairs 5-fluorouracil effects on pancreatic cancer. Oncotarget 9, 18239 (2018)Google Scholar
  131. 131.
    M. Battle, C. Gillespie, A. Quarshie, V. Lanier, T. Harmon, K. Wilson, M. Torroella-Kouri, R.R. Gonzalez-Perez, Obesity induced a leptin-Notch signaling axis in breast cancer. Int. J. Cancer. 134, 1605–1616 (2014)Google Scholar
  132. 132.
    C.C. Lipsey, A. Harbuzariu, D. Daley-Brown, R.R. Gonzalez-Perez, Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer. World J. Methodology 6, 43–55 (2016)Google Scholar
  133. 133.
    A. Harbuzariu, G.M. Oprea-Ilies, R.R. Gonzalez-Perez, The role of notch signaling and leptin-notch crosstalk in pancreatic cancer. Medicines (Basel, Switzerland). 5, E68 (2018)Google Scholar
  134. 134.
    A. Harbuzariu, A. Rampoldi, D.S. Daley-Brown, P. Candelaria, T.L. Harmon, C.C. Lipsey, D.J. Beech, A. Quarshie, G.O. Ilies, R.R. Gonzalez-Perez, Leptin-Notch signaling axis is involved in pancreatic cancer progression. Oncotarget 8, 7740 (2017)Google Scholar
  135. 135.
    S. Guo, R.R. Gonzalez-Perez, Notch, IL-1 and leptin crosstalk outcome (NILCO) is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS ONE 6, e21467 (2011)Google Scholar
  136. 136.
    L.S. Colbert, K. Wilson, S. Kim, Y. Liu, G. Oprea-Ilies, C. Gillespie, T. Dickson, G. Newman, R.R. Gonzalez-Perez, NILCO biomarkers in breast cancer from Chinese patients. BMC Cancer 14, 249 (2014)Google Scholar
  137. 137.
    C. Gillespie, A. Quarshie, M. Penichet, R. Gonzalez-Perez, Potential role of leptin signaling in DMBA-induced mammary tumors by non-responsive C57BL/6J mice fed a high-fat diet. J Carcinogene Mutagene 3, 20–23 (2012)Google Scholar
  138. 138.
    D. Daley-Brown, G. Oprea-Iles, K.T. Vann, V. Lanier, R. Lee, P.V. Candelaria, A. Quarshie, R. Pattillo, R.R. Gonzalez-Perez, Type II endometrial Cancer overexpresses NILCO: A preliminary evaluation. Dis. Markers 2017, 1–14 (2017)CrossRefGoogle Scholar
  139. 139.
    A. Zaravinos, The regulatory role of microRNAs in EMT and cancer. J. Oncol. 2015, 1–13 (2015)CrossRefGoogle Scholar
  140. 140.
    J. Yu, K. Ohuchida, K. Mizumoto, N. Sato, T. Kayashima, H. Fujita, K. Nakata, M. Tanaka, MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer 9, 169 (2010)Google Scholar
  141. 141.
    S. Brabletz, K. Bajdak, S. Meidhof, U. Burk, G. Niedermann, E. Firat, U. Wellner, A. Dimmler, G. Faller, J. Schubert, The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30, 770–782 (2011)Google Scholar
  142. 142.
    U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, T. Brabletz, A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008)Google Scholar
  143. 143.
    C.C. Chang, M.J. Wu, J.Y. Yang, I. Carmarillo, C.-J. Chang, Leptin-STAT3-G9a signaling promotes obesity-mediated breast cancer progression. Cancer Res. 75, 2375–2386 (2015)Google Scholar
  144. 144.
    C.I.T. Mantho, A. Harbuzariu, R.R. Gonzalez-Perez, Histone deacetylases, microRNA and leptin crosstalk in pancreatic cancer. World J. Clin. Oncol. 8, 178 (2017)Google Scholar
  145. 145.
    J. Joseph-Silverstein, R.L. Silverstein, Cell adhesion molecules: an overview. Cancer Invest. 16, 176–182 (1998)Google Scholar
  146. 146.
    B. Leitinger, E. Hohenester, Mammalian collagen receptors. Matrix Biol. 26, 146–155 (2007)Google Scholar
  147. 147.
    P. Caswell, J. Norman, Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol. 18, 257–263 (2008)Google Scholar
  148. 148.
    E. Zamir, B. Geiger, Components of cell-matrix adhesions. J. Cell Sci. 114, 3577–3579 (2001)Google Scholar
  149. 149.
    S.K. Mitra, D.A. Hanson, D.D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005)Google Scholar
  150. 150.
    M.S. Diamond, D.E. Staunton, A.R. De Fougerolles, S.A. Stacker, J. Garcia-Aguilar, M.L. Hibbs, T.A. Springer, ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111, 3129–3139 (1990)Google Scholar
  151. 151.
    N. Makrilia, A. Kollias, L. Manolopoulos, K. Syrigos, Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 27, 1023–1037 (2009)Google Scholar
  152. 152.
    Y. Maruo, A. Gochi, A. Kaihara, H. Shimamura, T. Yamada, N. Tanaka, K. Orita, ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int. J. Cancer. 100, 486–490 (2002)Google Scholar
  153. 153.
    A. Grothey, P. Heistermann, S. Philippou, R. Voigtmann, Serum levels of soluble intercellular adhesion molecule-1 (ICAM-1, CD54) in patients with non-small-cell lung cancer: correlation with histological expression of ICAM-1 and tumour stage. Br. J. Cancer 77, 801–807 (1998)Google Scholar
  154. 154.
    P.-C. Chen, T.-H. Lin, H.-C. Cheng, C.-H. Tang, CCN3 increases cell motility and ICAM-1 expression in prostate cancer cells. Carcinogenesis 33, 937–945 (2012)Google Scholar
  155. 155.
    A. Spina, F. Di Maiolo, A. Esposito, L. Sapio, E. Chiosi, L. Sorvillo, S. Naviglio, cAMP elevation down-regulates β 3 integrin and focal adhesion kinase and inhibits leptin-induced migration of MDA-MB-231 breast cancer cells. BioResearch 1, 324–332 (2012)Google Scholar
  156. 156.
    S. Naviglio, D. Di Gesto, F. Illiano, E. Chiosi, A. Giordano, G. Illiano, A. Spina, Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells. J. Cell. Physiol. 225, 801–809 (2010)Google Scholar
  157. 157.
    J. Ratke, F. Entschladen, B. Niggemann, K.S. Zänker, K. Lang, Leptin stimulates the migration of colon carcinoma cells by multiple signaling pathways. Endocr. Relat. Cancer. 17, 179–189 (2010)Google Scholar
  158. 158.
    N.-M. Heida, M. Leifheit-Nestler, M.R. Schroeter, J.-P. Müller, I.-F. Cheng, S. Henkel, A. Limbourg, F.P. Limbourg, F. Alves, J.P. Quigley, Leptin enhances the potency of circulating angiogenic cells via src kinase and integrin αvβ5: implications for angiogenesis in human obesity. Arterioscler. Thromb. Vasc. Biol. 30, 200 (2010)Google Scholar
  159. 159.
    S.-N. Yang, H.-T. Chen, H.-K. Tsou, C.-Y. Huang, W.-H. Yang, C.-M. Su, Y.-C. Fong, W.-P. Tseng, C.-H. Tang, Leptin enhances cell migration in human chondrosarcoma cells through OBRl leptin receptor. Carcinogenesis 30, 566–574 (2009)Google Scholar
  160. 160.
    C.Y. Huang, H.S. Yu, T.Y. Lai, Y.L. Yeh, C.C. Su, H.H. Hsu, F.J. Tsai, C.H. Tsai, H.C. Wu, C.H. Tang, Leptin increases motility and integrin up-regulation in human prostate cancer cells. J. Cell. Physiol. 226, 1274–1282 (2011)Google Scholar
  161. 161.
    C.K. Wong, P.F.Y. Cheung, C.W. Lam, Leptin-mediated cytokine release and migration of eosinophils: Implications for immunopathophysiology of allergic inflammation. Eur. J. Immunol. 37, 2337–2348 (2007)Google Scholar
  162. 162.
    Z. Dong, S. Fu, X. Xu, Y. Yang, L. Du, W. Li, S. Kan, Z. Li, X. Zhang, L. Wang, Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br. J. Cancer 110, 1801–1810 (2014)Google Scholar
  163. 163.
    M. Suzukawa, R. Koketsu, S. Baba, S. Igarashi, H. Nagase, M. Yamaguchi, N. Matsutani, M. Kawamura, S. Shoji, A. Hebisawa, Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L801–L811 (2015)Google Scholar
  164. 164.
    M. Yilmaz, G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15–33 (2009)Google Scholar
  165. 165.
    W.H. Goldmann, V. Auernheimer, I. Thievessen, B. Fabry, Vinculin, cell mechanics and tumour cell invasion. Cell Biol. Int. 37, 397–405 (2013)Google Scholar
  166. 166.
    T. Li, H. Guo, Y. Song, X. Zhao, Y. Shi, Y. Lu, S. Hu, Y. Nie, D. Fan, K. Wu, Loss of vinculin and membrane-bound β-catenin promotes metastasis and predicts poor prognosis in colorectal cancer. Mol. Cancer. 13, 263 (2014)Google Scholar
  167. 167.
    P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003)Google Scholar
  168. 168.
    S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537 (1997)Google Scholar
  169. 169.
    C. Ballestrem, B. Hinz, B.A. Imhof, B. Wehrle-Haller, Marching at the front and dragging behind. J. Cell Biol. 155, 1319–1332 (2001)Google Scholar
  170. 170.
    C.D. Nobes, A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995)Google Scholar
  171. 171.
    K. Wennerberg, C.J. Der, Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312 (2004)Google Scholar
  172. 172.
    S. Narumiya, M. Tanji, T. Ishizaki, Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 28, 65–76 (2009)Google Scholar
  173. 173.
    A.L. Bishop, H. Alan, Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000)Google Scholar
  174. 174.
    A.J. Ridley, Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 36, 103–112 (2015)Google Scholar
  175. 175.
    A. Ghasemi, S.I. Hashemy, M. Aghaei, M. Panjehpour, RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells. Cell. Signal. 32, 104–114 (2017)Google Scholar
  176. 176.
    T. Jaffe, B. Schwartz, Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int. J. Cancer. 123, 2543–2556 (2008)Google Scholar
  177. 177.
    Y. Xie, C.M. Potter, A. Le Bras, W.N. Nowak, W. Gu, S.I. Bhaloo, Z. Zhang, Y. Hu, L. Zhang, Q. Xu, Leptin induces Sca-1+ progenitor cell migration enhancing neointimal lesions in vessel-injury mouse models. Arterioscler. Thromb. Vasc. Biol. 37, 2114–2127 (2017)Google Scholar
  178. 178.
    Y.-E. Han, A. Lim, S.-H. Park, S. Chang, S.-H. Lee, W.-K. Ho, Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic β-cells. Exp. Mol. Med. 47, e190 (2015)Google Scholar
  179. 179.
    Z. Li, J. Liang, W.K.K. Wu, X. Yu, J. Yu, X. Weng, J. Shen, Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells. Int. J. Mol. Sci. 15, 1176–1188 (2014)Google Scholar
  180. 180.
    S.S. Stylli, A.H. Kaye, P. Lock, Invadopodia: at the cutting edge of tumour invasion. J. Clin. Neurosci. 15, 725–737 (2008)Google Scholar
  181. 181.
    W.T. Chen, Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J. Exp. Zool. A Ecol. Genet. Physiol. 251, 167–185 (1989)Google Scholar
  182. 182.
    R.E. Vandenbroucke, C. Libert, Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 13, 904–927 (2014)Google Scholar
  183. 183.
    A. Alaseem, K. Alhazzani, P. Dondapati, S. Alobid, A. Bishayee, A. Rathinavelu, in Semin. Cancer Biol., (Elsevier, 2017),Google Scholar
  184. 184.
    Y. Gong, U.D. Chippada-Venkata, W.K. Oh, Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancer 6, 1298–1327 (2014)Google Scholar
  185. 185.
    L. Al-Alem, T.E. Curry, Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction 150, R55–R64 (2015)Google Scholar
  186. 186.
    J. Cathcart, A. Pulkoski-Gross , J. Cao, Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis. 2, 26–34 (2015)Google Scholar
  187. 187.
    S. Löffek, O. Schilling, C.-W. Franzke, (Eur Respiratory Soc, 2011),Google Scholar
  188. 188.
    E.M. Sobrinho Santos, T.A. Guimaraes, H.O. Santos, L.M.B. Cangussu, S.F. de Jesus, C.A.d.C. Fraga, C.M. Cardoso, S.H.S. Santos, A.M.B. de Paula, R.S. Gomez, Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma. Tumor Biol. 39, 1010428317699130 (2017)Google Scholar
  189. 189.
    M. Hoffmann, E. Fiedor, A. Ptak, 17β-Estradiol reverses leptin-inducing ovarian cancer cell migration by the PI3K/Akt signaling pathway. Reproductive Sciences 23, 1600–1608 (2016)Google Scholar
  190. 190.
    Y.S. Jo, G.S.R. Lee, S.Y. Nam, S.J. Kim, Progesterone inhibits leptin-induced invasiveness of BeWo cells. Int. J.Med. Sci. 12, 773–779 (2015)Google Scholar
  191. 191.
    G. Han, W. Zhao, L. Wang, Z. Yue, R. Zhao, Y. Li, X. Zhou, X. Hu, J. Liu, Leptin enhances the invasive ability of glioma stem-like cells depending on leptin receptor expression. Brain Res. 1543, 1–8 (2014)Google Scholar
  192. 192.
    L. Wang, H. Cao, X. Pang, K. Li, W. Dang, H. Tang, T. Chen, The effect of leptin and its mechanisms on the migration and invasion of human breast cancer MCF-7 cells. Xi bao yu fen zi mian yi xue za zhi (Chinese Journal of Cellular and Molecular Immunology) 29, 1272–1276 (2013)Google Scholar
  193. 193.
    Y. Cha, Y. Kang, A. Moon, HER2 induces expression of leptin in human breast epithelial cells. BMB Reports 45, 719–723 (2012)Google Scholar
  194. 194.
    M.-C. Lin, F.-Y. Wang, Y.-H. Kuo, F.-Y. Tang, Cancer chemopreventive effects of lycopene: suppression of MMP-7 expression and cell invasion in human colon cancer cells. J. Agric. Food Chem. 59, 11304–11318 (2011)Google Scholar
  195. 195.
    N. Stefanou, V. Papanikolaou, Y. Furukawa, Y. Nakamura, A. Tsezou, Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase. BMC Cancer 10, 442 (2010)Google Scholar
  196. 196.
    V. McMurtry, A.-M. Simeone, R. Nieves-Alicea, A.M. Tari, Leptin utilizes Jun N-terminal kinases to stimulate the invasion of MCF-7 breast cancer cells. Clin. Exp. 26, 197–204 (2009)Google Scholar
  197. 197.
    N. Johansson, M. Ahonen, V.-M. Kähäri, Matrix metalloproteinases in tumor invasion. Cell. Mol. Life Sci. 57, 5–15 (2000)Google Scholar
  198. 198.
    B. Bauvois, New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta Rev. Cancer 1825, 29–36 (2012)Google Scholar
  199. 199.
    M. Björklund, E. Koivunen, Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta Rev. Cancer 1755, 37–69 (2005)Google Scholar
  200. 200.
    E.M.S. Santos, R.G. da Rocha, H.O. Santos, T.A. Guimarães, C.A. de Carvalho Fraga, L.H. da Silveira, P.R. Batista, P.S.L. de Oliveira, G.A. Melo, S.H. Santos, Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway. Pathol. Res. Pract. 214, 30–37 (2018)Google Scholar
  201. 201.
    H. Zou, Y. Liu, D. Wei, T. Wang, K. Wang, S. Huang, L. Liu, Y. Li, J. Ge, X. Li, Leptin promotes proliferation and metastasis of human gallbladder cancer through OB-Rb leptin receptor. Int. J. Oncol. 49, 197–206 (2016)Google Scholar
  202. 202.
    J.-H. Ahn, Y.S. Choi, J.-H. Choi, Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. MHR: Basic Sci. Reprod. Med. 21, 792–802 (2015)Google Scholar
  203. 203.
    N. Borkakoti, Structural studies of matrix metalloproteinases. J. Mol. Med. 78, 261–268 (2000)Google Scholar
  204. 204.
    H. Nagase, J.F. Woessner, Matrix metalloproteinases. J. Biol. Chem. 274, 21491–21494 (1999)Google Scholar
  205. 205.
    T.E. Curry Jr, K.G. Osteen, The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr. Rev. 24, 428–465 (2003)Google Scholar
  206. 206.
    J. Wang, X. Li, X. Gao, S. An, H. Liu, J. Liang, K. Zhang, Z. Liu, J. Wang, Z. Chen, Expression of MMP-13 is associated with invasion and metastasis of papillary thyroid carcinoma. Eur. Rev. Med. Pharmacol. Sci. 17, 427–435 (2013)Google Scholar
  207. 207.
    B. Zhang, X. Cao, Y. Liu, W. Cao, F. Zhang, S. Zhang, H. Li, L. Ning, L. Fu, Y. Niu, Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognosis of invasive breast cancer. BMC Cancer 8, 83 (2008)Google Scholar
  208. 208.
    B. Yang, J. Gao, Z. Rao, Q. Shen, Clinicopathological significance and prognostic value of MMP-13 expression in colorectal cancer. Scand. J. Clin. Lab. Invest. 72, 501–505 (2012)Google Scholar
  209. 209.
    B. Hantke, N. Harbeck, B. Schmalfeldt, I. Claes, O. Hiller, M.-O. Luther, A. Welk, W. Kuhn, M. Schmitt, H. Tschesche, Clinical relevance of matrix metalloproteinase-13 determined with a new highly specific and sensitive ELISA in ascitic fluid of advanced ovarian carcinoma patients. Biol. Chem. 384, 1247–1251 (2003)Google Scholar
  210. 210.
    W.L. Yeh, D.Y. Lu, M.J. Lee, W.M. Fu, Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia 57, 454–464 (2009)Google Scholar
  211. 211.
    D. Iliopoulos, K.N. Malizos, A. Tsezou, Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann. Rheum. Dis. 66, 1616–1621 (2007)Google Scholar
  212. 212.
    A. Koskinen, K. Vuolteenaho, R. Nieminen, T. Moilanen, E. Moilanen, Leptin enhances MMP-l, MMP-3 and MMP-13 production in human osteoarthritic cartilage and correlates with MMP-1 and MMP-3 in synovial fluid from OA patients. Clin. Exp. Rheumatol. 29, 57 (2011)Google Scholar
  213. 213.
    R.C. Williams, A.J. Skelton, S.M. Todryk, A.D. Rowan, P.M. Preshaw, J.J. Taylor, Leptin and pro-inflammatory stimuli synergistically upregulate MMP-1 and MMP-3 secretion in human gingival fibroblasts. PLoS ONE 11, e0148024 (2016)Google Scholar
  214. 214.
    L. Liberale, A. Bonaventura, F. Carbone, M. Bertolotto, P. Contini, N. Scopinaro, G.B. Camerini, F.S. Papadia, R. Cordera, G.G. Camici, Early reduction of matrix metalloproteinase-8 serum levels is associated with leptin drop and predicts diabetes remission after bariatric surgery. Int. J. Cardiol. 245, 257–262 (2017)Google Scholar
  215. 215.
    F.q. Wang, J. So, S. Reierstad, D.A. Fishman, Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int. J. Cancer 114, 19–31 (2005)Google Scholar
  216. 216.
    A. Ghasemi, S.I. Hashemy, M. Aghaei, M. Panjehpour, Leptin induces matrix metalloproteinase 7 expression to promote ovarian cancer cell invasion by activating ERK and JNK pathways. J. Cell. Biochem. 119, 2333–2344 (2018)Google Scholar
  217. 217.
    M.-C. Lin, S.-Y. Tsai, F.-Y. Wang, F.-H. Liu, J.-N. Syu, F.-Y. Tang, Leptin induces cell invasion and the upregulation of matrilysin in human colon cancer cells. Biomedicine 3, 174–180 (2013)Google Scholar
  218. 218.
    I. Yana, M. Seiki, MT-MMPs play pivotal roles in cancer dissemination. Clin. Exp. Metastasis 19, 209–215 (2002)Google Scholar
  219. 219.
    Y. Itoh, Membrane-type matrix metalloproteinases: their functions and regulations. Matrix Biol. 44, 207–223 (2015)Google Scholar
  220. 220.
    Z. Dong, X. Xu, L. Du, Y. Yang, H. Cheng, X. Zhang, Z. Li, L. Wang, J. Li, H. Liu, Leptin-mediated regulation of MT1-MMP localization is KIF1B dependent and enhances gastric cancer cell invasion. Carcinogenesis 34, 974–983 (2013)Google Scholar
  221. 221.
    H. Wang, H. Cheng, Q. Shao, Z. Dong, Q. Xie, L. Zhao, Q. Wang, B. Kong, X. Qu, Leptin-promoted human extravillous trophoblast invasion is MMP14 dependent and requires the cross talk between Notch1 and PI3K/Akt signaling. Biol. Reprod. 90, 71–10 (2014)Google Scholar
  222. 222.
    K. Dass, A. Ahmad, A.S. Azmi, S.H. Sarkar, F.H. Sarkar, Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev. 34, 122–136 (2008)Google Scholar
  223. 223.
    C.E. de Bock, Y. Wang, Clinical significance of urokinase-type plasminogen activator receptor (uPAR) expression in cancer. Med. Res. Rev. 24, 13–39 (2004)Google Scholar
  224. 224.
    P.A. van Dam, A. Coelho, C. Rolfo, Is there a role for urokinase-type plasminogen activator inhibitors as maintenance therapy in patients with ovarian cancer? Eur. J. Surg. Oncol. 43, 252–257 (2017)Google Scholar
  225. 225.
    P. Singh, T.E. Peterson, K.R. Barber, F.S. Kuniyoshi, A. Jensen, M. Hoffmann, A.S. Shamsuzzaman, V.K. Somers, Leptin upregulates the expression of plasminogen activator inhibitor-1 in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 392, 47–52. (2010)Google Scholar
  226. 226.
    S. Landskroner-Eiger, B. Qian, E.S. Muise, A.R. Nawrocki, J.P. Berger, E.J. Fine, W. Koba, Y. Deng, J.W. Pollard, P.E. Scherer, Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin. Cancer Res. 15, 3265–3276 (2009)Google Scholar
  227. 227.
    F. Messaggio, A.M. Mendonsa, J. Castellanos, N.S. Nagathihalli, L. Gorden, N.B. Merchant, M.N. VanSaun, Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget 8, 85378 (2017)Google Scholar
  228. 228.
    W. An, Y. Bai, S.-X. Deng, J. Gao, Q.-W. Ben, Q.-C. Cai, H.-G. Zhang, Z.-S. Li, Adiponectin levels in patients with colorectal cancer and adenoma: a meta-analysis. Eur. J. Cancer Prev. 21, 126–133 (2012)Google Scholar
  229. 229.
    E. Petridou, C. Mantzoros, N. Dessypris, P. Koukoulomatis, C. Addy, Z. Voulgaris, G. Chrousos, D. Trichopoulos, Plasma adiponectin concentrations in relation to endometrial cancer: a case-control study in Greece. J. Clin. Endocrinol. Metab. 88, 993–997 (2003)Google Scholar
  230. 230.
    P.C. Konturek, G. Burnat, T. Rau, E.G. Hahn, S. Konturek, Effect of adiponectin and ghrelin on apoptosis of Barrett adenocarcinoma cell line. Dig. Dis. Sci. 53, 597–605 (2008)Google Scholar
  231. 231.
    S.S. Tworoger, A.H. Eliassen, T. Kelesidis, G.A. Colditz, W.C. Willett, C.S. Mantzoros, S.E. Hankinson, Plasma adiponectin concentrations and risk of incident breast cancer. J. Clin. Endocrinol. Metab. 92, 1510–1516 (2007)Google Scholar
  232. 232.
    J.A. Handy, N.K. Saxena, P. Fu, S. Lin, J.E. Mells, N.A. Gupta, F.A. Anania, Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J. Cell. Biochem. 110, 1195–1207 (2010)Google Scholar
  233. 233.
    I.L. Beales, C. Garcia-Morales, O.O. Ogunwobi, G. Mutungi, Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B. Mol. Cell. Endocrinol. 382, 150–158 (2014)Google Scholar
  234. 234.
    L. Lessard, M. Stuible, M.L. Tremblay, The two faces of PTP1B in cancer. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1804, 613–619 (2010)Google Scholar
  235. 235.
    Z.-Y. Zhang, G.T. Dodd, T. Tiganis, Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol. Sci. 36, 661–674 (2015)Google Scholar
  236. 236.
    L. Taliaferro-Smith, A. Nagalingam, B.B. Knight, E. Oberlick, N.K. Saxena, D. Sharma, Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia 15, 23IN10–38IN11 (2013)Google Scholar
  237. 237.
    D. Sharma, J. Wang, P.P. Fu, S. Sharma, A. Nagalingam, J. Mells, J. Handy, A.J. Page, C. Cohen, F.A. Anania, Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology 52, 1713–1722 (2010)Google Scholar
  238. 238.
    X. Wu, Q. Yan, Z. Zhang, G. Du, X. Wan, Acrp30 inhibits leptin-induced metastasis by downregulating the JAK/STAT3 pathway via AMPK activation in aggressive SPEC-2 endometrial cancer cells. Oncol. Rep. 27, 1488–1496 (2012)Google Scholar
  239. 239.
    S.A. Verploegen, G. Plaetinck, R. Devos, J. Van der Heyden, Y. Guisez, A human leptin mutant induces weight gain in normal mice. FEBS Lett 405, 237–240 (1997)Google Scholar
  240. 240.
    L. Brunner, S. Whitebread, I. Leconte, A. Stricker-Krongrad, F. Cumin, M. Chiesi, N. Levens, A peptide leptin antagonist reduces food intake in rodents. Int. J. Obes. Relat. Metab. Disord. 23, 463–469 (1999)Google Scholar
  241. 241.
    F. Peelman, K. Van Beneden, L. Zabeau, H. Iserentant, P. Ulrichts, D. Defeau, A. Verhee, D. Catteeuw, D. Elewaut, J. Tavernier, Mapping of the leptin binding sites and design of a leptin antagonist. J. Biol. Chem. 279, 41038–41046 (2004)Google Scholar
  242. 242.
    H. Park, S.-H. Ahn, Y. Jung, J.C. Yoon, Y.-H. Choi, Leptin suppresses glutamate-induced apoptosis through regulation of ERK1/2 signaling pathways in rat primary astrocytes. Cell. Physiol. Biochem. 44, 2117–2128 (2017)Google Scholar
  243. 243.
    G. Salomon, L. Niv-Spector, E.E. Gussakovsky, A. Gertler, Large-scale preparation of biologically active mouse and rat leptins and their L39A/D40A/F41A muteins which act as potent antagonists. Protein Expr. Purif. 47, 128–136 (2006)Google Scholar
  244. 244.
    L. Niv-Spector, D. Gonen-Berger, I. Gourdou, E. Biener, E.E. Gussakovsky, Y. Benomar, K.V. Ramanujan, M. Taouis, B. Herman, I. Callebaut, Identification of the hydrophobic strand in the A–B loop of leptin as major binding site III: implications for large-scale preparation of potent recombinant human and ovine leptin antagonists. Biochem. J. 391, 221–230 (2005)Google Scholar
  245. 245.
    S. Samuel-Mendelsohn, M. Inbar, E. Weiss-Messer, L. Niv-Spector, A. Gertler, R.J. Barkey, Leptin signaling and apoptotic effects in human prostate cancer cell lines. The Prostate 71, 929–945 (2011)Google Scholar
  246. 246.
    S. Catalano, A. Leggio, I. Barone, R. De Marco, L. Gelsomino, A. Campana, R. Malivindi, S. Panza, C. Giordano, A. Liguori, A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo. J. Cell. Mol. Med. 19, 1122–1132 (2015)Google Scholar
  247. 247.
    E. Fiedor, E.Ł. Gregoraszczuk, The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother. Pharmacol. 78, 611–622 (2016)Google Scholar
  248. 248.
    E. Fiedor, E. Gregoraszczuk, Superactive human leptin antagonist (SHLA), triple Lan1 and quadruple Lan2 leptin mutein as a promising treatment for human folliculoma. Cancer Chemother. Pharmacol. 80, 815–827 (2017)Google Scholar
  249. 249.
    L. Niv-Spector, M. Shpilman, Y. Boisclair, A. Gertler, Large-scale preparation and characterization of non-pegylated and pegylated superactive ovine leptin antagonist. Protein Expr. Purif. 81, 186–192 (2012)Google Scholar
  250. 250.
    M. Shpilman, L. Niv-Spector, M. Katz, C. Varol, G. Solomon, M. Ayalon-Soffer, E. Boder, Z. Halpern, E. Elinav, A. Gertler, Development and characterization of high affinity leptins and leptin antagonists. J. Biol. Chem. 286, 4429–4442 (2011)Google Scholar
  251. 251.
    G. Bain, E. Collie-Duguid, G.I. Murray, F. Gilbert, A. Denison, F. McKiddie, T. Ahearn, I. Fleming, J. Leeds, P. Phull, Tumour expression of leptin is associated with chemotherapy resistance and therapy-independent prognosis in gastro-oesophageal adenocarcinomas. Br. J. Cancer. 110, 1525 (2014)Google Scholar
  252. 252.
    E. Fiedor, K. Zajda, E.L. Gregoraszczuk, leptin receptor antagonists' action on HDAC expression eliminating the negative effects of leptin in ovarian cancer. Cancer Genomics Proteomics 15, 329–336 (2018)Google Scholar
  253. 253.
    P. Grasso, M.C. Leinung, S.P. Ingher, D.W. Lee, In vivo effects of leptin-related synthetic peptides on body weight and food intake in female ob/ob mice: localization of leptin activity to domains between amino acid residues 106–140. Endocrinology. 138, 1413–1418 (1997)Google Scholar
  254. 254.
    R.R. Gonzalez, P.C. Leavis, A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 21, 185–195 (2003)Google Scholar
  255. 255.
    M. Ramos, B. Rueda, P. Leavis, R. Gonzalez, Leptin serves as an upstream activator of an obligatory signaling cascade in the embryo-implantation process. Endocrinology 146, 694–701 (2005)Google Scholar
  256. 256.
    A. Leggio, S. Catalano, R. De Marco, I. Barone, S. Andò, A. Liguori, Therapeutic potential of leptin receptor modulators. Eur. J. Med. Chem. 78, 97–105 (2014)Google Scholar
  257. 257.
    L. Otvos, E. Surmacz, Targeting the leptin receptor: a potential new mode of treatment for breast cancer. Expert Rev. Anticancer Ther. 11, 1147–1150 (2011)Google Scholar
  258. 258.
    L. Otvos, I. Kovalszky, M. Riolfi, R. Ferla, J. Olah, A. Sztodola, K. Nama, A. Molino, Q. Piubello, J.D. Wade, Efficacy of a leptin receptor antagonist peptide in a mouse model of triple-negative breast cancer. Eur. J. Cancer 47, 1578–1584 (2011)Google Scholar
  259. 259.
    S. Beccari, I. Kovalszky, J.D. Wade, L. Otvos Jr, E. Surmacz, Designer peptide antagonist of the leptin receptor with peripheral antineoplastic activity. Peptides 44, 127–134 (2013)Google Scholar
  260. 260.
    T. Harmon, A. Harbuzariu, V. Lanier, C.C. Lipsey, W. Kirlin, L. Yang, R.R. Gonzalez-Perez, Nanoparticle-linked antagonist for leptin signaling inhibition in breast cancer. World J. Clin. Oncol. 8, 54 (2017)Google Scholar
  261. 261.
    Y.-T. Chin, L.-M. Wang, M.-T. Hsieh, Y.-J. Shih, A.W. Nana, C.A. Changou, Y.-C.S. Yang, H.-C. Chiu, E. Fu, P.J. Davis, Leptin OB3 peptide suppresses leptin-induced signaling and progression in ovarian cancer cells. J. Biomed. Sci. 24, 51 (2017)Google Scholar
  262. 262.
    Y.-C.S. Yang, Y.-T. Chin, M.-T. Hsieh, H.-Y. Lai, C.-C. Ke, D.R. Crawford, O.K. Lee, E. Fu, S.A. Mousa, P. Grasso, Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: comparison with leptin. Oncotarget 7, 27641 (2016)Google Scholar
  263. 263.
    S.-H. Kim, A. Nagalingam, N.K. Saxena, S.V. Singh, D. Sharma, Benzyl isothiocyanate inhibits oncogenic actions of leptin in human breast cancer cells by suppressing activation of signal transducer and activator of transcription 3. Carcinogenesis 32, 359–367 (2010)Google Scholar
  264. 264.
    M. Higginbottom, A.V.-A. Horgan, J. Horton, I. Simpson, C. Tyzack, (Google Patents, 2009),Google Scholar
  265. 265.
    M. Fazeli, H. Zarkesh-Esfahani, Z. Wu, M. Maamra, M. Bidlingmaier, A.G. Pockley, P. Watson, G. Matarese, C.J. Strasburger, R.J. Ross, Identification of a monoclonal antibody against the leptin receptor that acts as an antagonist and blocks human monocyte and T cell activation. J. Immunol. Methods. 312, 190–200 (2006)Google Scholar
  266. 266.
    L. Zabeau, A. Verhee, D. Catteeuw, L. Faes, S. Seeuws, T. Decruy, D. Elewaut, F. Peelman, J. Tavernier, Selection of non-competitive leptin antagonists using a random nanobody-based approach. Biochem. J. 441, 425–434 (2012)Google Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  1. 1.Department of Basic Medical SciencesNeyshabur University of Medical SciencesNeyshaburIran
  2. 2.Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
  3. 3.Department of Physiology, School of Basic Science, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
  4. 4.Department of Genetic, School of MedicineMashhad University of Medical SciencesMashhadIran
  5. 5.Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations