Advertisement

Cellular Oncology

, Volume 42, Issue 1, pp 93–106 | Cite as

CCR5 blockage by maraviroc: a potential therapeutic option for metastatic breast cancer

  • Asim Pervaiz
  • Michael Zepp
  • Saqib Mahmood
  • Doaa Mohamed Ali
  • Martin R. BergerEmail author
  • Hassan Adwan
Original Paper
  • 166 Downloads

Abstract

Purpose

Bone metastasis is observed in up to 70% of breast cancer patients. The currently available treatment options are palliative in nature. Chemokine receptor 5 (CCR5) has gained attention as therapeutic target in various malignancies. Here, we investigated the effects of targeting CCR5 by its antagonist maraviroc in metastatic breast cancer cells.

Methods

In response to maraviroc exposure, cytotoxicity was assessed using an MTT proliferation assay, whereas the effects on colony formation and migration were assessed using colony formation, transwell chamber migration and scratch wound healing assays, respectively. Apoptosis-related activities were investigated using nuclear staining, annexin-V FITC staining and Western blotting. Cell cycle changes were analysed using flow cytometry and qRT-PCR for cell cycle relevant genes. A nude rat model for breast cancer bone metastasis was used to evaluate the in vivo efficacy of CCR5 targeting by maraviroc. Circulatory levels of the three cognate ligands for CCR5 (CCL3, CCL4, CCL5) were analysed in sera of breast cancer patients using ELISA.

Results

We found that blockade of CCR5 attenuated the proliferation, colony formation and migration of metastatic breast cancer cells, and induced apoptosis and arrest in the G1 phase of the cell cycle. Expression profiling highlighted the involvement of cell cycle related signalling cascades. We also found that treatment with maraviroc significantly inhibited bone metastasis in nude rats implanted with MDA-MB-231 breast cancer cells. Finally, we found that the circulatory levels of three cognate ligands for the CCR5 receptor varied between breast cancer patients and healthy controls.

Conclusion

Our findings indicate that targeting CCR5 may be an effective strategy to combat breast cancer bone metastasis.

Keywords

Breast cancer Bone metastasis CCR5 Maraviroc Cell cycle arrest Apoptosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For clinical investigations, informed consent was obtained from all patients and the study was approved by the relevant authorities from University of Health Sciences and INMOL hospital, Lahore, Pakistan. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Animal experiments were approved by the author’s institutional review board and governmental animal ethics committee (Regierungspräsidium, Karlsruhe, Germany). All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

13402_2018_415_MOESM1_ESM.xlsx (14 kb)
ESM 1 (XLSX 14 kb)

References

  1. 1.
    L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108 (2015).  https://doi.org/10.3322/caac.21262 CrossRefGoogle Scholar
  2. 2.
    C. DeSantis, R. Siegel, P. Bandi, A. Jemal, Breast cancer statistics, 2011. CA Cancer J Clin 61, 409–418 (2011).  https://doi.org/10.3322/caac.20134 CrossRefGoogle Scholar
  3. 3.
    M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: Molecular and cellular mechanisms underlying lung metastasis. Cell Oncol 41, 123–140 (2018).  https://doi.org/10.1007/s13402-018-0376-6 CrossRefGoogle Scholar
  4. 4.
    C. Fontanella, V. Fanotto, K. Rihawi, G. Aprile, F. Puglisi, Skeletal metastases from breast cancer: Pathogenesis of bone tropism and treatment strategy. Clin Exp Metastasis 32, 819–833 (2015).  https://doi.org/10.1007/s10585-015-9743-0 CrossRefGoogle Scholar
  5. 5.
    H. Kennecke, R. Yerushalmi, R. Woods, M.C. Cheang, D. Voduc, C.H. Speers, T.O. Nielsen, K. Gelmon, Metastatic behavior of breast cancer subtypes. J Clin Oncol 28, 3271–3277 (2010).  https://doi.org/10.1200/JCO.2009.25.9820 CrossRefGoogle Scholar
  6. 6.
    L. Gerratana, V. Fanotto, M. Bonotto, S. Bolzonello, A.M. Minisini, G. Fasola, F. Puglisi, Pattern of metastasis and outcome in patients with breast cancer. Clin Exp Metastasis 32, 125–133 (2015).  https://doi.org/10.1007/s10585-015-9697-2 CrossRefGoogle Scholar
  7. 7.
    G.R. Mundy, Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer 2, 584–593 (2002).  https://doi.org/10.1038/nrc867 CrossRefGoogle Scholar
  8. 8.
    L.A. Liotta, E.C. Kohn, The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).  https://doi.org/10.1038/35077241 CrossRefGoogle Scholar
  9. 9.
    P. Samadi, S. Saki, F.K. Dermani, M. Pourjafar, M. Saidijam, Emerging ways to treat breast cancer: Will promises be met? Cell Oncol (2018).  https://doi.org/10.1007/s13402-018-0409-1
  10. 10.
    M. Stanisic, S.P. Lyngstadaas, A.H. Pripp, A.O. Aasen, K.F. Lindegaard, J. Ivanovic, E. Ilstad, A. Konglund, T. Sandell, O. Ellingsen, T. Saehle, Chemokines as markers of local inflammation and angiogenesis in patients with chronic subdural hematoma: A prospective study. Acta Neurochir 154, 113–120; discussion 120 (2012).  https://doi.org/10.1007/s00701-011-1203-2
  11. 11.
    F.R. Balkwill, The chemokine system and cancer. J Pathol 226, 148–157 (2012).  https://doi.org/10.1002/path.3029 CrossRefGoogle Scholar
  12. 12.
    F. Sallusto, M. Baggiolini, Chemokines and leukocyte traffic. Nat Immunol 9, 949–952 (2008).  https://doi.org/10.1038/ni.f.214 CrossRefGoogle Scholar
  13. 13.
    A. Mantovani, R. Bonecchi, M. Locati, Tuning inflammation and immunity by chemokine sequestration: Decoys and more. Nat Rev Immunol 6, 907–918 (2006).  https://doi.org/10.1038/nri1964 CrossRefGoogle Scholar
  14. 14.
    D. Mukherjee, J. Zhao, The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 3, 46–57 (2013)Google Scholar
  15. 15.
    A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, A. Zlotnik, Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).  https://doi.org/10.1038/35065016 CrossRefGoogle Scholar
  16. 16.
    B.Z. Qian, J. Li, H. Zhang, T. Kitamura, J. Zhang, L.R. Campion, E.A. Kaiser, L.A. Snyder, J.W. Pollard, CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).  https://doi.org/10.1038/nature10138 CrossRefGoogle Scholar
  17. 17.
    B. Sharma, K.C. Nannuru, M.L. Varney, R.K. Singh, Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clin Exp Metastasis 32, 65–72 (2015).  https://doi.org/10.1007/s10585-014-9691-0 CrossRefGoogle Scholar
  18. 18.
    M. Oppermann, Chemokine receptor CCR5: Insights into structure, function, and regulation. Cell Signal 16, 1201–1210 (2004).  https://doi.org/10.1016/j.cellsig.2004.04.007 CrossRefGoogle Scholar
  19. 19.
    P. Weitzenfeld, A. Ben-Baruch, The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 352, 36–53 (2014).  https://doi.org/10.1016/j.canlet.2013.10.006 CrossRefGoogle Scholar
  20. 20.
    M. Velasco-Velazquez, R.G. Pestell, The CCL5/CCR5 axis promotes metastasis in basal breast cancer. Oncoimmunology 2, e23660 (2013).  https://doi.org/10.4161/onci.23660 CrossRefGoogle Scholar
  21. 21.
    T.T. Murooka, R. Rahbar, E.N. Fish, CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochem Biophys Res Commun 387, 381–386 (2009).  https://doi.org/10.1016/j.bbrc.2009.07.035 CrossRefGoogle Scholar
  22. 22.
    S. Ali, G. Lazennec, Chemokines: Novel targets for breast cancer metastasis. Cancer Metastasis Rev 26, 401–420 (2007).  https://doi.org/10.1007/s10555-007-9073-z CrossRefGoogle Scholar
  23. 23.
    Y. Niwa, H. Akamatsu, H. Niwa, H. Sumi, Y. Ozaki, A. Abe, Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 7, 285–289 (2001)Google Scholar
  24. 24.
    S. Sasaki, T. Baba, T. Nishimura, Y. Hayakawa, S. Hashimoto, N. Gotoh, N. Mukaida, Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Lett 378, 23–32 (2016).  https://doi.org/10.1016/j.canlet.2016.05.005 CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, F.Y. Meng, W.L. Li, C.X. Zhou, Z. Guan, H.Y. Fan, Association of chemotactic factor receptor 5 gene with breast cancer. Genet Mol Res 12, 5289–5300 (2013).  https://doi.org/10.4238/2013.November.7.4 CrossRefGoogle Scholar
  26. 26.
    A. Khalid, J. Wolfram, I. Ferrari, C. Mu, J. Mai, Z. Yang, Y. Zhao, M. Ferrari, X. Ma, H. Shen, Recent advances in discovering the role of CCL5 in metastatic breast Cancer. Mini Rev Med Chem 15, 1063–1072 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Pervaiz, M. Zepp, H. Adwan, M.R. Berger, Riproximin modulates multiple signaling cascades leading to cytostatic and apoptotic effects in human breast cancer cells. J Cancer Res Clin Oncol 142, 135–147 (2016).  https://doi.org/10.1007/s00432-015-2013-3 CrossRefGoogle Scholar
  28. 28.
    A. Pervaiz, S. Ansari, M.R. Berger, H. Adwan, CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 32(158), 158 (2015).  https://doi.org/10.1007/s12032-015-0607-x CrossRefGoogle Scholar
  29. 29.
    T. Bauerle, J. Peterschmitt, H. Hilbig, F. Kiessling, F.P. Armbruster, M.R. Berger, Treatment of bone metastasis induced by MDA-MB-231 breast cancer cells with an antibody against bone sialoprotein. Int J Oncol 28, 573–583 (2006)Google Scholar
  30. 30.
    M. Zepp, Bäuerle, T.J., Elazar, V., Peterschmidt, J., Lifshitz-Shovali, R., Adwan, H., Armbruster, F.P., Golomb, G., Berger, M.R., in Breast Cancer, Current and Alternative Therapeutic Modalities, ed. by Gunduz M, Gunduz E. (InTech, Rijeka, 2011), p. 453–488Google Scholar
  31. 31.
    T. Bauerle, H. Adwan, F. Kiessling, H. Hilbig, F.P. Armbruster, M.R. Berger, Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer 115, 177–186 (2005).  https://doi.org/10.1002/ijc.20840 CrossRefGoogle Scholar
  32. 32.
    S. Khokher, M.U. Qureshi, S. Mahmood, S. Sadiq, Determinants of advanced stage at initial diagnosis of breast Cancer in Pakistan: Adverse tumor biology vs delay in diagnosis. Asian Pac J Cancer Prev 17, 759–765 (2016)CrossRefGoogle Scholar
  33. 33.
    M.I. Palacios-Arreola, K.E. Nava-Castro, J.I. Castro, E. Garcia-Zepeda, J.C. Carrero, J. Morales-Montor, The role of chemokines in breast cancer pathology and its possible use as therapeutic targets. J Immunol Res 2014, 849720 (2014).  https://doi.org/10.1155/2014/849720 CrossRefGoogle Scholar
  34. 34.
    T. Kitamura, J.W. Pollard, Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacol Res 100, 266–270 (2015).  https://doi.org/10.1016/j.phrs.2015.08.004 CrossRefGoogle Scholar
  35. 35.
    M. Velasco-Velazquez, W. Xolalpa, R.G. Pestell, The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 18, 1265–1275 (2014).  https://doi.org/10.1517/14728222.2014.949238 CrossRefGoogle Scholar
  36. 36.
    M. Velasco-Velazquez, X. Jiao, M. De La Fuente, T.G. Pestell, A. Ertel, M.P. Lisanti, R.G. Pestell, CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 72, 3839–3850 (2012).  https://doi.org/10.1158/0008-5472.CAN-11-3917 CrossRefGoogle Scholar
  37. 37.
    A. Mencarelli, L. Graziosi, B. Renga, S. Cipriani, C. D'Amore, D. Francisci, A. Bruno, F. Baldelli, A. Donini, S. Fiorucci, CCR5 antagonism by Maraviroc reduces the potential for gastric Cancer cell dissemination. Transl Oncol 6, 784–793 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Tanabe, S. Sasaki, N. Mukaida, T. Baba, Blockade of the chemokine receptor, CCR5, reduces the growth of orthotopically injected colon cancer cells via limiting cancer-associated fibroblast accumulation. Oncotarget 7, 48335–48345 (2016).  https://doi.org/10.18632/oncotarget.10227 CrossRefGoogle Scholar
  39. 39.
    N. Halama, I. Zoernig, A. Berthel, C. Kahlert, F. Klupp, M. Suarez-Carmona, T. Suetterlin, K. Brand, J. Krauss, F. Lasitschka, T. Lerchl, C. Luckner-Minden, A. Ulrich, M. Koch, J. Weitz, M. Schneider, M.W. Buechler, L. Zitvogel, T. Herrmann, A. Benner, C. Kunz, S. Luecke, C. Springfeld, N. Grabe, C.S. Falk, D. Jaeger, Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in Cancer patients. Cancer Cell 29, 587–601 (2016).  https://doi.org/10.1016/j.ccell.2016.03.005
  40. 40.
    R. Yost, T.R. Pasquale, E.G. Sahloff, Maraviroc: A coreceptor CCR5 antagonist for management of HIV infection. Am J Health Syst Pharm 66, 715–726 (2009).  https://doi.org/10.2146/ajhp080206 CrossRefGoogle Scholar
  41. 41.
    D.K. Walker, S. Abel, P. Comby, G.J. Muirhead, A.N. Nedderman, D.A. Smith, Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV. Drug Metab Dispos 33, 587–595 (2005).  https://doi.org/10.1124/dmd.104.002626 CrossRefGoogle Scholar
  42. 42.
    Y. Wu, A. Yoder, Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog 5, e1000520 (2009).  https://doi.org/10.1371/journal.ppat.1000520 CrossRefGoogle Scholar
  43. 43.
    X. Jiao, M.A. Velasco-Velazquez, M. Wang, Z. Li, H. Rui, A.R. Peck, J.E. Korkola, X. Chen, S. Xu, J.B. DuHadaway, S. Guerrero-Rodriguez, S. Addya, D. Sicoli, Z. Mu, G. Zhang, A. Stucky, X. Zhang, M. Cristofanilli, A. Fatatis, J.W. Gray, J.F. Zhong, G.C. Prendergast, R.G. Pestell, CCR5 governs DNA damage and breast cancer stem cell expansion. Cancer Res 78, 1657–1671 (2018).  https://doi.org/10.1158/0008-5472.CAN-17-0915 CrossRefGoogle Scholar
  44. 44.
    S.F. Doisneau-Sixou, C.M. Sergio, J.S. Carroll, R. Hui, E.A. Musgrove, R.L. Sutherland, Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10, 179–186 (2003)CrossRefGoogle Scholar
  45. 45.
    J. Chen, The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6, a026104 (2016).  https://doi.org/10.1101/cshperspect.a026104 CrossRefGoogle Scholar
  46. 46.
    S. Manes, E. Mira, R. Colomer, S. Montero, L.M. Real, C. Gomez-Mouton, S. Jimenez-Baranda, A. Garzon, R.A. Lacalle, K. Harshman, A. Ruiz, A.C. Martinez, CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J Exp Med 198, 1381–1389 (2003).  https://doi.org/10.1084/jem.20030580 CrossRefGoogle Scholar
  47. 47.
    X.F. Dai, H.Y. Cheng, Z.H. Bai, J. Li, Breast Cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8, 3131–3141 (2017).  https://doi.org/10.7150/jca.18457 CrossRefGoogle Scholar
  48. 48.
    D. Gao, R. Rahbar, E.N. Fish, CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells. Open Biol 6 (2016).  https://doi.org/10.1098/rsob.160122
  49. 49.
    D. Gao, L.H. Cazares, E.N. Fish, CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer 17, 834 (2017).  https://doi.org/10.1186/s12885-017-3817-0
  50. 50.
    M.J. Sax, C. Gasch, V.R. Athota, R. Freeman, P. Rasighaemi, D.E. Westcott, C.J. Day, I. Nikolic, B. Elsworth, M. Wei, K. Rogers, A. Swarbrick, V. Mittal, N. Pouliot, A.S. Mellick, Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget 7, 85437–85449 (2016).  https://doi.org/10.18632/oncotarget.13387 CrossRefGoogle Scholar
  51. 51.
    C.E. de Oliveira, J.M. Oda, R. Losi Guembarovski, K.B. de Oliveira, C.B. Ariza, J.S. Neto, B.K. Banin Hirata, M.A. Watanabe, CC chemokine receptor 5: The interface of host immunity and cancer. Dis Markers 126954, 2014–2018 (2014).  https://doi.org/10.1155/2014/126954 Google Scholar
  52. 52.
    I. Vasiliadou, I. Holen, The role of macrophages in bone metastasis. J Bone Oncol 2, 158–166 (2013).  https://doi.org/10.1016/j.jbo.2013.07.002 CrossRefGoogle Scholar
  53. 53.
    E. Obeid, R. Nanda, Y.X. Fu, O.I. Olopade, The role of tumor-associated macrophages in breast cancer progression (review). Int J Oncol 43, 5–12 (2013).  https://doi.org/10.3892/ijo.2013.1938 CrossRefGoogle Scholar
  54. 54.
    Q. Zhang, J. Qin, L. Zhong, L. Gong, B. Zhang, Y. Zhang, W.Q. Gao, CCL5-mediated Th2 immune polarization promotes metastasis in luminal breast Cancer. Cancer Res 75, 4312–4321 (2015).  https://doi.org/10.1158/0008-5472.CAN-14-3590 CrossRefGoogle Scholar
  55. 55.
    Y. Vahidi, Z. Faghih, A.R. Talei, M. Doroudchi, A. Ghaderi, Memory CD4(+) T cell subsets in tumor draining lymph nodes of breast cancer patients: A focus on T stem cell memory cells. Cell Oncol 41, 1–11 (2018).  https://doi.org/10.1007/s13402-017-0352-6 CrossRefGoogle Scholar
  56. 56.
    I.A. Voutsadakis, Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: Therapeutic implications. Cell Oncol 41, 107–121 (2018).  https://doi.org/10.1007/s13402-018-0373-9 CrossRefGoogle Scholar
  57. 57.
    E. Lee, E.J. Fertig, K. Jin, S. Sukumar, N.B. Pandey, A.S. Popel, Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5, 4715 (2014).  https://doi.org/10.1038/ncomms5715

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Institute of Biomedical and Allied Health SciencesUniversity of Health SciencesLahorePakistan
  2. 2.Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ)HeidelbergGermany
  3. 3.German University of CairoCairoEgypt

Personalised recommendations