Cellular Oncology

, Volume 42, Issue 1, pp 29–40 | Cite as

Radio-sensitization of head and neck cancer cells by a combination of poly(I:C) and cisplatin through downregulation of survivin and c-IAP2

  • Martina Mikulandra
  • Antonio Kobescak
  • Benjamin Verillaud
  • Pierre Busson
  • Tanja Matijevic GlavanEmail author
Original Paper



Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers. Concurrent radio-chemotherapy is the standard of care for advanced tumors. However, there is a need for more efficient regimens with less side effects resulting from high doses. Therefore, we set out to explore the therapeutic potential of ternary combinations by bringing together irradiation, cis-platinum and a TLR3 agonist, poly(I:C), with the aim to reduce the dosage of each treatment. This approach is based on our previous work, which revealed a selective cytotoxic effect of TLR3 agonists against malignant cells when combined with other anti-neoplastic agents.


We explored the survival of HNSCC-derived cells (Detroit 562, FaDu, SQ20B and Cal27) using MTT and caspase 3/7 activation assays. The radio-sensitization effects of poly(I:C) and cisplatin were assessed using Western blotting, cell cycle progression, ROS formation and qRT-PCR assays.


We found that the combination of poly(I:C) and cisplatin downregulated c-IAP2 and survivin expression, reduced cell survival, induced anti-apoptotic gene expression and apoptosis, increased ROS formation and induced G2/M cell cycle arrest in the HNSCC-derived cells tested.


Our results indicate that a combined poly(I:C) and cisplatin treatment reduces the survival and induces the radio-sensitivity of HNSCC-derived cells, thus providing a rationale for the development of novel strategies for the treatment of head and neck cancer.


Head and neck cancer Therapy Poly(I:C) Cisplatin Radio-sensitization TLR3 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13402_2018_403_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)


  1. 1.
    N. Vigneswaran, M.D. Williams, Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. North Am. 26, 123–141 (2014)CrossRefGoogle Scholar
  2. 2.
    M.L. Gillison, Human papillomavirus-associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity. Semin. Oncol. 31, 744–754 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Marur, G. D’Souza, W.H. Westra, A.A. Forastiere, HPV-associated head and neck cancer: A virus-related cancer epidemic. Lancet Oncol. 11, 781–789 (2010)CrossRefGoogle Scholar
  4. 4.
    I.P. Ribeiro, F. Caramelo, F. Marques, A. Domingues, M. Mesquita, L. Barroso, H. Prazeres, M.J. Julião, I.P. Baptista, A. Ferreira, J.B. Melo, I.M. Carreira, WT1, MSH6, GATA5 and PAX5 as epigenetic oral squamous cell carcinoma biomarkers - a short report. Cell. Oncol. 39, 573–582 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Specenier, J.B. Vermorken, Cetuximab: Its unique place in head and neck cancer treatment. Biologics 7, 77–90 (2013)Google Scholar
  6. 6.
    V. Gregoire, J.L. Lefebvre, L. Licitra, E. Felip, E.-E.-E.G.W. Group, Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21, v184–v186 (2010)CrossRefGoogle Scholar
  7. 7.
    E.S. Choi, S. Oh, B. Jang, H.J. Yu, J.A. Shin, N.P. Cho, I.H. Yang, D.H. Won, H.J. Kwon, S.D. Hong, S.D. Cho, Silymarin and its active component silibinin act as novel therapeutic alternatives for salivary gland cancer by targeting the ERK1/2-Bim signaling cascade. Cell Oncol. 40, 235–246 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Medzhitov, P. Preston-Hurlburt, C.A. Janeway Jr., A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997)CrossRefGoogle Scholar
  9. 9.
    F.L. Rock, G. Hardiman, J.C. Timans, R.A. Kastelein, J.F. Bazan, A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. U. S. A. 95, 588–593 (1998)CrossRefGoogle Scholar
  10. 10.
    T. Kawasaki, T. Kawai, Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Matijevic, J. Pavelic, Toll-like receptors: Cost or benefit for cancer? Curr. Pharm. Des. 16, 1081–1090 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Mikulandra, J. Pavelic, T.M. Glavan, Recent findings on the application of Toll-like receptors agonists in cancer therapy. Curr. Med. Chem. 24 (2017)Google Scholar
  13. 13.
    L. Alexopoulou, A.C. Holt, R. Medzhitov, R.A. Flavell, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001)CrossRefGoogle Scholar
  14. 14.
    T. Matijevic, J. Pavelic, The dual role of TLR3 in metastatic cell line. Clin. Exp. Metastasis 28, 701–712 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Pries, L. Hogrefe, L. Xie, H. Frenzel, C. Brocks, C. Ditz, B. Wollenberg, Induction of c-Myc-dependent cell proliferation through toll-like receptor 3 in head and neck cancer. Int. J. Mol. Med. 21, 209–215 (2008)Google Scholar
  16. 16.
    B. Verillaud, M. Gressette, Y. Morel, C. Paturel, P. Herman, K.W. Lo, S.W. Tsao, M. Wassef, A.S. Jimenez-Pailhes, P. Busson, Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: Consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic. Infect. Agent Cancer 7, 36 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Matijevic, G. Kirinec, J. Pavelic, Antitumor activity from the combined application of poly(I:C) and chemotherapeutics in human metastatic pharyngeal cell lines. Chemotherapy 57, 460–467 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Veyrat, S. Durand, M. Classe, T.M. Glavan, N. Oker, N.I. Kapetanakis, X. Jiang, A. Gelin, P. Herman, O. Casiraghi, D. Zagzag, D. Enot, P. Busson, B. Verillaud, Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 7, 82580–82593 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Matijevic Glavan, A. Cipak Gasparovic, B. Verillaud, P. Busson, J. Pavelic, Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol. Carcinog. 56, 1214–1226 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Friboulet, C. Gourzones, S.W. Tsao, Y. Morel, C. Paturel, S. Temam, C. Uzan, P. Busson, Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells. BMC Cancer 10, 327 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Friboulet, C. Pioche-Durieu, S. Rodriguez, A. Valent, S. Souquere, H. Ripoche, A. Khabir, S.W. Tsao, J. Bosq, K.W. Lo, P. Busson, Recurrent overexpression of c-IAP2 in EBV-associated nasopharyngeal carcinomas: Critical role in resistance to Toll-like receptor 3-mediated apoptosis. Neoplasia 10, 1183–1194 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Weber, Z. Kirejczyk, R. Besch, S. Potthoff, M. Leverkus, G. Hacker, Proapoptotic signalling through toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ. 17, 942–951 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Ding, J. Ren, D. Zhang, Y. Li, X. Huang, J. Ji, Q. Hu, H. Wang, Y. Ni, Y. Hou, The TLR3 agonist inhibit drug efflux and sequentially consolidates low-dose Cisplatin-based Chemoimmunotherapy while reducing side effects. Mol. Cancer Ther. 16, 1068–1079 (2017)CrossRefGoogle Scholar
  24. 24.
    D.N. Van, C.F. Roberts, J.D. Marion, S. Lepine, K.B. Harikumar, J. Schreiter, C.I. Dumur, X. Fang, S. Spiegel, J.K. Bell, Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics. FASEB J. 26, 3188–3198 (2012)CrossRefGoogle Scholar
  25. 25.
    F. Bianchi, S. Pretto, E. Tagliabue, A. Balsari, L. Sfondrini, Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol. Ther. 18, 747–756 (2017)CrossRefGoogle Scholar
  26. 26.
    Q.L. Deveraux, R. Takahashi, G.S. Salvesen, J.C. Reed, X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997)CrossRefGoogle Scholar
  27. 27.
    G. Ambrosini, C. Adida, D.C. Altieri, A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3, 917–921 (1997)CrossRefGoogle Scholar
  28. 28.
    K. Satoh, K. Kaneko, M. Hirota, A. Masamune, A. Satoh, T. Shimosegawa, Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer 92, 271–278 (2001)CrossRefGoogle Scholar
  29. 29.
    N. Nomi, S. Kodama, M. Suzuki, Toll-like receptor 3 signaling induces apoptosis in human head and neck cancer via survivin associated pathway. Oncol. Rep. 24, 225–231 (2010)Google Scholar
  30. 30.
    S. Bhattacharyya, V. Sekar, B. Majumder, D.G. Mehrotra, S. Banerjee, A.K. Bhowmick, N. Alam, G.K. Mandal, J. Biswas, P.K. Majumder, N. Murmu, CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell. Oncol. 40, 145–155 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Vavrova, M. Rezacova, Importance of proapoptotic protein PUMA in cell radioresistance. Folia Biol. (Praha) 60, 53–56 (2014)Google Scholar
  32. 32.
    M. Maalouf, G. Alphonse, A. Colliaux, M. Beuve, S. Trajkovic-Bodennec, P. Battiston-Montagne, I. Testard, O. Chapet, M. Bajard, G. Taucher-Scholz, C. Fournier, C. Rodriguez-Lafrasse, Different mechanisms of cell death in radiosensitive and radioresistant p53 mutated head and neck squamous cell carcinoma cell lines exposed to carbon ions and x-rays. Int. J. Radiat. Oncol. Biol. Phys. 74, 200–209 (2009)CrossRefGoogle Scholar
  33. 33.
    Q.H. Yang, C. Du, Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J. Biol. Chem. 279, 16963–16970 (2004)CrossRefGoogle Scholar
  34. 34.
    E.A. Reap, K. Roof, K. Maynor, M. Borrero, J. Booker, P.L. Cohen, Radiation and stress-induced apoptosis: A role for Fas/Fas ligand interactions. Proc. Natl. Acad. Sci. U. S. A. 94, 5750–5755 (1997)CrossRefGoogle Scholar
  35. 35.
    E.A. Reits, J.W. Hodge, C.A. Herberts, T.A. Groothuis, M. Chakraborty, E.K. Wansley, K. Camphausen, R.M. Luiten, A.H. de Ru, J. Neijssen, A. Griekspoor, E. Mesman, F.A. Verreck, H. Spits, J. Schlom, P. van Veelen, J.J. Neefjes, Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006)CrossRefGoogle Scholar
  36. 36.
    J.Y. Lim, S.A. Gerber, S.P. Murphy, E.M. Lord, Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol. Immunother. 63, 259–271 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Hernandez, P. Huebener, R.F. Schwabe, Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 35, 5931–5941 (2016)CrossRefGoogle Scholar
  38. 38.
    S.J. Dovedi, M.H. Melis, R.W. Wilkinson, A.L. Adlard, I.J. Stratford, J. Honeychurch, T.M. Illidge, Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood 121, 251–259 (2013)CrossRefGoogle Scholar
  39. 39.
    K.A. Mason, H. Ariga, R. Neal, D. Valdecanas, N. Hunter, A.M. Krieg, J.K. Whisnant, L. Milas, Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin. Cancer Res. 11, 361–369 (2005)Google Scholar
  40. 40.
    L. Milas, K.A. Mason, H. Ariga, N. Hunter, R. Neal, D. Valdecanas, A.M. Krieg, J.K. Whisnant, CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 64, 5074–5077 (2004)CrossRefGoogle Scholar
  41. 41.
    S.-J. Kang, J.-H. Tak, J.-H. Cho, H.-J. Lee, Y.-J. Jung, Stimulation of the endosomal TLR pathway enhances autophagy-induced cell death in radiotherapy of breast cancer. Genes Genomics 32, 599–606 (2010)CrossRefGoogle Scholar
  42. 42.
    I.A.Voutsadakis, Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: Therapeutic implications. Cell. Oncol. 41, 107–121 (2018)CrossRefGoogle Scholar
  43. 43.
    B. Solomon, R.J. Young, D. Rischin, Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin. Cancer Biol. (2018).
  44. 44.
    M. Nagasaka, M. Zaki, H. Kim, S.N. Raza, G. Yoo, H.S. Lin, A. Sukari, PD1/PD-L1 inhibition as a potential radiosensitizer in head and neck squamous cell carcinoma: A case report. J. Immunother. Cancer 4, 832016 (2016)CrossRefGoogle Scholar
  45. 45.
    T. Nagato, E. Celis, A novel combinatorial cancer immunotherapy: Poly-IC and blockade of the PD-1/PD-L1 pathway. Oncoimmunology 3, e28440 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Takeda, K. Kataoka, J. Yamagishi, S. Ogawa, T. Seya, M.A. Matsumoto, TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy. Cell Rep. 19, 1874–1887 (2017)CrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2018

Authors and Affiliations

  1. 1.Laboratory for Personalized Medicine, Division of Molecular MedicineRudjer Boskovic InstituteZagrebCroatia
  2. 2.Department of Radiotherapy and Medical OncologyUniversity Hospital for Tumors, University Hospital Centre Sisters of MercyZagrebCroatia
  3. 3.University Paris-Sud 11, CNRS-UMR 8126, Institut Gustave RoussyVillejuif cedexFrance
  4. 4.Department of Head and Neck surgery, Lariboisière Hospital, AP-HPUniversity Paris-Diderot Paris 7ParisFrance

Personalised recommendations