Cellular Oncology

, Volume 42, Issue 2, pp 237–242 | Cite as

Nuclear localization of PD-L1: artifact or reality?

  • Hara Polioudaki
  • Amanda Chantziou
  • Konstantina Kalyvianaki
  • Panagiotis Malamos
  • George Notas
  • Dimitris Mavroudis
  • Marilena Kampa
  • Elias Castanas
  • Panayiotis A. TheodoropoulosEmail author



The levels of expression and membrane localization of programmed cell death ligand 1 (PD-L1), an immune checkpoint type I transmembrane glycoprotein, are related to the clinical response of anti-PD-L1/PD-1 therapy. Although the biologically relevant localization of PD-L1 is on the plasma membrane of cancer cells, it has also been reported to be in the cytoplasm and sometimes in the nucleus. Furthermore, it has been claimed that chemotherapeutics can modify PD-L1 expression and/or its nuclear localization.


Data from our group suggest that the nuclear localization of PD-L1, and other plasma membrane proteins as well, could be an artifact resulting from inadequate experimental conditions during immunocytochemical studies. Mild detergent and rigorous fixation conditions should be used in order to preserve the membrane localization and to prevent an erroneous translocation of PD-L1 and other non-interconnected membrane proteins, such as CD24, into other cellular compartments including the nucleus, of untreated and chemotherapeutically treated breast cancer cells.


We propose that well-specified and rigorously followed protocols should be applied to immunocytochemical diagnostic techniques, especially to those related to individualized diagnosis and treatment.


Breast cancer PD-L1 Doxorubicin Nuclear localization Plasma membrane 



Programmed cell death ligand 1



This work was partly supported by grant KA4969 from the Special Account for Research Funds of the University of Crete.

Author’s contributions

HP, AC, KK, PM: acquisition and analysis of data, revising the manuscript. GN, DM, MK: analysis and interpretation of data, revising the manuscript. EC: analysis and interpretation of data, contribution to study planning, drafting and revising the manuscript. PAT: conception and design of the study, analysis and interpretation of the data, drafting and revising the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    V.K. Bhosle, J.C. Rivera, S. Chemtob, New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases. 26, 1–10 (2017)Google Scholar
  2. 2.
    B. Boivin, G. Vaniotis, B.G. Allen, T.E. Hebert, G protein-coupled receptors in and on the cell nucleus: A new signaling paradigm? J. Recept. Signal Transduct. Res. 28, 15–28 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    T. Viita, M.K. Vartiainen, From cytoskeleton to gene expression: Actin in the nucleus. Handb. Exp. Pharmacol. 235, 311–329 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    R.P. Hobbs, J.T. Jacob, P.A. Coulombe, Keratins are going nuclear. Dev. Cell 38, 227–233 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    T.S. Yeh, R.H. Hsieh, S.C. Shen, S.H. Wang, M.J. Tseng, C.M. Shih, J.J. Lin, Nuclear betaII-tubulin associates with the activated notch receptor to modulate notch signaling. Cancer Res. 64, 8334–8340 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    T. Akoumianaki, D. Kardassis, H. Polioudaki, S.D. Georgatos, P.A. Theodoropoulos, Nucleocytoplasmic shuttling of soluble tubulin in mammalian cells. J. Cell Sci. 122, 1111–1118 (2009)CrossRefPubMedGoogle Scholar
  7. 7.
    Y. Du, J. Shen, J.L. Hsu, Z. Han, M.C. Hsu, C.C. Yang, H.P. Kuo, Y.N. Wang, H. Yamaguchi, S.A. Miller, M.C. Hung, Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene 33, 756–770 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    H.W. Lo, M. Ali-Seyed, Y. Wu, G. Bartholomeusz, S.C. Hsu, M.C. Hung, Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J. Cell. Biochem. 98, 1570–1583 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Garcia-Diaz, D.S. Shin, B.H. Moreno, J. Saco, H. Escuin-Ordinas, G.A. Rodriguez, J.M. Zaretsky, L. Sun, W. Hugo, X. Wang, G. Parisi, C.P. Saus, D.Y. Torrejon, T.G. Graeber, B. Comin-Anduix, S. Hu-Lieskovan, R. Damoiseaux, R.S. Lo, A. Ribas, Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    C.A. Crane, A. Panner, J.C. Murray, S.P. Wilson, H. Xu, L. Chen, J.P. Simko, F.M. Waldman, R.O. Pieper, A.T. Parsa, PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene 28, 306–312 (2009)CrossRefPubMedGoogle Scholar
  12. 12.
    A.T. Parsa, J.S. Waldron, A. Panner, C.A. Crane, I.F. Parney, J.J. Barry, K.E. Cachola, J.C. Murray, T. Tihan, M.C. Jensen, P.S. Mischel, D. Stokoe, R.O. Pieper, Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 13, 84–88 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    M.L. Burr, C.E. Sparbier, Y.C. Chan, J.C. Williamson, K. Woods, P.A. Beavis, E.Y.N. Lam, M.A. Henderson, C.C. Bell, S. Stolzenburg, O. Gilan, S. Bloor, T. Noori, D.W. Morgens, M.C. Bassik, P.J. Neeson, A. Behren, P.K. Darcy, S.J. Dawson, I. Voskoboinik, J.A. Trapani, J. Cebon, P.J. Lehner, M.A. Dawson, CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    I.A. Voutsadakis, Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: Therapeutic implications. Cell. Oncol. 41, 107–121 (2018)CrossRefGoogle Scholar
  15. 15.
    E.R. Parra, P. Villalobos, J. Rodriguez-Canales, The multiple faces of programmed cell death ligand 1 expression in malignant and nonmalignant cells. Appl. Immunohistochem. Mol. Morphol. (2017).
  16. 16.
    M. Ilie, V. Hofman, M. Dietel, J.C. Soria, P. Hofman, Assessment of the PD-L1 status by immunohistochemistry: Challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch. 468, 511–525 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    E.R. Parra, P. Villalobos, B. Mino, J. Rodriguez-Canales, Comparison of different antibody clones for immunohistochemistry detection of programmed cell death ligand 1 (PD-L1) on non-small cell lung carcinoma. Appl. Immunohistochem. Mol. Morphol. 26, 83–93 (2018)PubMedGoogle Scholar
  18. 18.
    L. Chen, H. Deng, M. Lu, B. Xu, Q. Wang, J. Jiang, C. Wu, B7-H1 expression associates with tumor invasion and predicts patient's survival in human esophageal cancer. Int. J. Clin. Exp. Pathol. 7, 6015–6023 (2014)PubMedPubMedCentralGoogle Scholar
  19. 19.
    Y. Zhi, Z. Mou, J. Chen, Y. He, H. Dong, X. Fu, Y. Wu, B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal Cancer stem-like cells. PLoS One 10, e0135528 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    A. Satelli, I.S. Batth, Z. Brownlee, C. Rojas, Q.H. Meng, S. Kopetz, S. Li, Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci. Rep. 6, 28910 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    C. Maccalli, K.I. Rasul, M. Elawad, S. Ferrone, The role of cancer stem cells in the modulation of anti-tumor immune responses. Semin. Cancer Biol. 53, 189-200 (2018)Google Scholar
  22. 22.
    S. Almozyan, D. Colak, F. Mansour, A. Alaiya, O. Al-Harazi, A. Qattan, F. Al-Mohanna, M. Al-Alwan, H. Ghebeh, PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int. J. Cancer 141, 1402–1412 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    H. Ghebeh, C. Lehe, E. Barhoush, K. Al-Romaih, A. Tulbah, M. Al-Alwan, S.F. Hendrayani, P. Manogaran, A. Alaiya, T. Al-Tweigeri, A. Aboussekhra, S. Dermime, Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: Role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12, R48 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    P.A. Theodoropoulos, H. Polioudaki, S. Agelaki, G. Kallergi, Z. Saridaki, D. Mavroudis, V. Georgoulias, Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett. 288, 99–106 (2010)CrossRefPubMedGoogle Scholar
  25. 25.
    L. Mellor, C.B. Knudson, D. Hida, E.B. Askew, W. Knudson, Intracellular domain fragment of CD44 alters CD44 function in chondrocytes. J. Biol. Chem. 288, 25838–25850 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    H. Polioudaki, M.C. Kastrinaki, H.A. Papadaki, P.A. Theodoropoulos, Microtubule-interacting drugs induce moderate and reversible damage to human bone marrow mesenchymal stem cells. Cell Prolif. 42, 434–447 (2009)CrossRefPubMedGoogle Scholar
  27. 27.
    J.E. Duex, C. Owens, A. Chauca-Diaz, G.M. Dancik, L.A. Vanderlinden, D. Ghosh, M.Z. Leivo, D.E. Hansel, D. Theodorescu, Nuclear CD24 drives tumor growth and is predictive of poor patient prognosis. Cancer Res. 77, 4858–4867 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    K.A. Tanaka, K.G. Suzuki, Y.M. Shirai, S.T. Shibutani, M.S. Miyahara, H. Tsuboi, M. Yahara, A. Yoshimura, S. Mayor, T.K. Fujiwara, A. Kusumi, Membrane molecules mobile even after chemical fixation. Nat. Methods 7, 865–866 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    I. Zerdes, A. Matikas, J. Bergh, G.Z. Rassidakis, T. Foukakis, Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: Biology and clinical correlations. Oncogene 37, 4639–4661 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    K.W. Mouw, M.S. Goldberg, P.A. Konstantinopoulos, A.D. D'Andrea, DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7, 675–693 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    J.S. Brown, R. Sundar, J. Lopez, Combining DNA damaging therapeutics with immunotherapy: More haste, less speed. Br. J. Cancer 118, 312–324 (2018)CrossRefPubMedGoogle Scholar
  32. 32.
    O. Hovorka, V. Subr, D. Vetvicka, L. Kovar, J. Strohalm, M. Strohalm, A. Benda, M. Hof, K. Ulbrich, B. Rihova, Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation. Eur. J. Pharm. Biopharm. 76, 514–524 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • Hara Polioudaki
    • 1
  • Amanda Chantziou
    • 1
  • Konstantina Kalyvianaki
    • 2
  • Panagiotis Malamos
    • 2
  • George Notas
    • 2
  • Dimitris Mavroudis
    • 3
    • 4
  • Marilena Kampa
    • 2
  • Elias Castanas
    • 2
  • Panayiotis A. Theodoropoulos
    • 1
    Email author
  1. 1.Department of Biochemistry, School of MedicineUniversity of CreteHeraklionGreece
  2. 2.Laboratory of Experimental Endocrinology, School of MedicineUniversity of CreteHeraklionGreece
  3. 3.Department of Medical OncologyUniversity General Hospital of HeraklionHeraklionGreece
  4. 4.Laboratory of Translational Oncology, School of MedicineUniversity of CreteHeraklionGreece

Personalised recommendations