Advertisement

Cellular Oncology

, Volume 42, Issue 2, pp 173–196 | Cite as

Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance

  • María Julia Lamberti
  • Mandy Rettel
  • Jeroen Krijgsveld
  • Viviana Alicia RivarolaEmail author
  • Natalia Belén Rumie VittarEmail author
Original Paper

Abstract

Purpose

Previous analyses of the tumor microenvironment (TME) have resulted in a concept that tumor progression may depend on interactions between cancer cells and its surrounding stroma. An important aspect of these interactions is the ability of cancer cells to modulate stroma behavior, and vice versa, through the action of a variety of soluble mediators. Here, we aimed to identify soluble factors present in the TME of colorectal cancer cells that may affect relevant pathways through secretome profiling.

Methods

To partially recapitulate the TME and its architecture, we co-cultured colorectal cancer cells (SW480, TC) with stromal fibroblasts (MRC-5, F) as 3D-spheroids. Subsequent characterization of both homotypic (TC) and heterotypic (TC + F) spheroid secretomes was performed using label-free liquid chromatography-mass spectrometry (LC-MS).

Results

Through bioinformatic analysis using the NCI-Pathway Interaction Database (NCI-PID) we found that the HIF-1 signaling pathway was most highly enriched among the proteins whose secretion was enhanced in the heterotypic spheroids. Previously, we found that HIF-1 may be associated with resistance of colorectal cancer cells to photodynamic therapy (PDT), an antitumor therapy that combines photosensitizing agents, O2 and light to create a harmful photochemical reaction. Here, we found that the presence of fibroblasts considerably diminished the sensitivity of colorectal cancer cells to photodynamic activity. Although the biological significance of the HIF-1 pathway of secretomes was decreased after photosensitization, this decrease was partially reversed in heterotypic 3D-spheroids. HIF-1 pathway modulation by both PDT and stromal fibroblasts was confirmed through expression assessment of the HIF-target VEGF, as well as through HIF transcriptional activity assessment.

Conclusion

Collectively, our results delineate a potential mechanism by which stromal fibroblasts may enhance colorectal cancer cell survival and photodynamic treatment resistance via HIF-1 pathway modulation.

Keywords

Tumor microenvironment Photodynamic therapy Secretome Spheroids Cancer associated fibroblasts Colorectal cancer cells 

Abbreviations

3D

Three dimensional

AGC

Automatic gain control

CRC

Colorectal cancer

DMSO

Dimethyl sulfoxide

ENO1

Enolase 1

F

Fibroblast

FBS

Fetal bovine serum

GFP

Green fluorescent protein

GLUT-1

Glucose transporter 1

HCD

High energy collision induced dissociation

HIF-1

Hypoxia inducible factor-1

LDHA

Lactate dehydrogenase

LC-MS

Liquid chromatography–Mass spectrometry

LFQ

Label-free quantification

Me-ALA

Aminolevulinic acid methyl ester

MTT

1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan

NCI-PID

National Cancer Institute–Pathway Interaction Database

NPM1

Nucleophosmin

PAI-1

Plasminogen activator inhibitor 1

PBS

Phosphate buffer saline

PpIX

Protoporphyrin IX

PS

Photosensitizer

TC

Tumor cell

TFRC

Transferrin receptor protein 1

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (PICT), Secretaría de Ciencia y Técnica (SECyT), Universidad Nacional de Río Cuarto, and a Christian Boulin Fellowship (EMBL). VAR and NBRV are members of the Scientific Researcher Career at CONICET. MJL holds a fellowship from CONICET.

Compliance with ethical standards

Conflict of interest

None declared.

Supplementary material

13402_2018_418_MOESM1_ESM.docx (20 kb)
Table S1 Perseus correlation matrix. Correlation coefficients whose magnitude were greater than 0.7 were considered highly correlated (red numbers indicate correlation values <0.7) (DOCX 19 kb)
13402_2018_418_MOESM2_ESM.docx (33 kb)
Table S2 List of proteins identified in homotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 33 kb)
13402_2018_418_MOESM3_ESM.docx (37 kb)
Table S3 List of proteins identified in heterotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 36 kb)
13402_2018_418_MOESM4_ESM.docx (45 kb)
Table S4 List of proteins identified in PDT-treated homotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 45 kb)
13402_2018_418_MOESM5_ESM.docx (55 kb)
Table S5 List of proteins identified in PDT-treated heterotypic spheroids secretome. Available information: ID identified according to UniProt, name of the protein, corresponding gene, location of the signal peptide in those proteins secreted by the classical pathway (SignalP), NN-score of proteins secreted by non-classical pathways (SecretomeP, the NN-score should be greater than 0.5), LFQ (“label-free quantification”) value (mean and standard deviation). (DOCX 55 kb)
13402_2018_418_MOESM6_ESM.jpg (64 kb)
Fig S1 Histograms. Histograms were performed using the logarithmic LFQ values (log10 (x)) to visualize the normal distribution of the data (Perseus software) (JPG 63 kb)
13402_2018_418_MOESM7_ESM.jpg (221 kb)
Fig S2 Multiscatter plot. The multiscatter plot was performed using the logarithmic LFQ values (log2 (x)) to visualize the correlation between the replicates (JPG 220 kb)
13402_2018_418_Fig6_ESM.png (981 kb)
Fig S3

Gene Ontology. (A) Biological process classification in Gene Ontology analysis of proteins whose secretion was enhanced in in photosensitized homotypic spheroids compared to untreated ones. (B) Biological process classification in Gene Ontology analysis of proteins whose secretion was enhanced in in photosensitized heterotypic spheroids compared to untreated ones. (PNG 980 kb)

13402_2018_418_MOESM8_ESM.tif (11.6 mb)
High Resolution (TIF 11850 kb)

References

  1. 1.
    P. Nilendu, S. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G. Sarode, J. Pal, N. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell. Oncol. 41, 353 (2018)CrossRefGoogle Scholar
  2. 2.
    N. Eiro, L. González, A. Martínez-Ordoñez, B. Fernandez-Garcia, L. González, S. Cid, F. Dominguez, R. Perez-Fernandez, F. Vizoso, Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell. Oncol. 41, 369 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Cirri, P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 31, 195 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Paltridge, L. Belle, Y. Khew-Goodall, Advances in the proteomic investigation of the cell secretome. Biochim. Biophys. Acta 1834, 2233 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    K. Brown, C. Formolo, H. Seol, R. Marathi, S. Duguez, E. An, D. Pillai, J. Nazarian, B. Rood, Y. Hathout, Advances in the proteomic investigation of the cell secretome. Expert Rev. Proteomics 9, 337 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    D. Hanahan, L. Coussens, Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309 (2012)CrossRefGoogle Scholar
  7. 7.
    D. Hanahan, R. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Agostinis, E. Buytaert, H. Breyssens, N. Hendrickx, Regulatory pathways in photodynamic therapy induced apoptosis. Photochem. Photobiol. Sci. 3, 721 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    N. Rumie Vittar, M. Lamberti, M. Pansa, R. Vera, M. Rodriguez, I. Cogno, L. Milla Sanabria, V. Rivarola, Ecological photodynamic therapy: New trend to disrupt the intricate networks within tumor ecosystem. Biochim. Biophys. Acta 1835, 86 (2013)PubMedGoogle Scholar
  10. 10.
    A. Kawczyk-Krupka, A. Bugaj, W. Latos, K. Zaremba, K. Wawrzyniec, A. Sieroń, Photodynamic therapy in colorectal cancer treatment: The state of the art in clinical trials. Photodiagn. Photodyn. Ther. 12, 545 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Lamberti, M. Pansa, R. Vera, M. Fernandez-Zapico, N. Rumie Vittar, V. Rivarola, Transcriptional activation of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy. PLoS One 12, e0177801 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    M. Rodríguez, C. Catrinacio, A. Ropolo, V. Rivarola, M. Vaccaro, A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem. Photobiol. Sci. 16, 1631 (2017)CrossRefPubMedGoogle Scholar
  13. 13.
    U. Brockmeier, C. Platzek, K. Schneider, P. Patak, A. Bernardini, J. Fandrey, E. Metzen, The function of hypoxia-inducible factor (HIF) is independent of the endoplasmic reticulum protein OS-9. PLoS One 6, e19151 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    M. Pansa, M. Lamberti, I. Cogno, S. Correa, N. Rumie Vittar, V. Rivarola, Contribution of resident and recruited macrophages to the photodynamic intervention of colorectal tumor microenvironment. Tumour Biol. 37, 541 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    W. Metzger, D. Sossong, A. Bächle, N. Pütz, G. Wennemuth, T. Pohlemann, M. Oberringer, The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13, 1000 (2011)CrossRefPubMedGoogle Scholar
  16. 16.
    M. Lamberti, M. Pansa, R. Vera, N. Rumie Vittar, V. Rivarola, Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer. Laser Phys. 24, 8 (2014)CrossRefGoogle Scholar
  17. 17.
    G. Comito, E. Giannoni, P. Di Gennaro, C. Segura, G. Gerlini, P. Chiarugi, Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer Lett. 324, 31 (2012)CrossRefPubMedGoogle Scholar
  18. 18.
    C. Hughes, S. Foehr, D. Garfield, E. Furlong, L. Steinmetz, J. Krijgsveld, Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 10 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Gouw, J. Krijgsveld, MSQuant: A platform for stable isotope-based quantitative proteomics. Methods Mol. Biol. 893, 511 (2012)CrossRefPubMedGoogle Scholar
  20. 20.
    M. Arntzen, I. Karlskås, M. Skaugen, V. Eijsink, G. Mathiesen, Proteomic investigation of the response of enterococcus faecalis V583 when cultivated in urine. PLoS One 10, e0126694 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Y. Zhang, Z. Dong, D. Wang, Y. Wu, Q. Song, P. Gu, P. Zhao, Q. Xia, Proteomics of larval hemolymph in Bombyx mori reveals various nutrient-storage and immunity-related proteins. Amino Acids 46, 1021 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    J. Bendtsen, L. Jensen, N. Blom, G. Von Heijne, S. Brunak, Eature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    T. Petersen, S. Brunak, G. von Heijne, H. Nielsen, SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, B. Snel, STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258 (2003)CrossRefGoogle Scholar
  25. 25.
    C. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay, K. Buetow, PID: The pathway interaction database. Nucleic Acids Res. 37, D674 (2009)CrossRefPubMedGoogle Scholar
  26. 26.
    M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis, K. Dolinski, S. Dwight, J. Eppig, M. Harris, D. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. Matese, J. Richardson, M. Ringwald, G. Rubin, G. Sherlock, Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    M. Lamberti, N. Rumie Vittar, F. de Carvalho da Silva, V. Ferreira, V. Rivarola, Synergistic enhancement of antitumor effect of B-Lapachone by photodynamic induction of quinone oxidoreductase (NQO1). Phytomedicine 20, 1007 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    C. Hellweg, C. Baumstark-Khan, G. Horneck, Enhanced green fluorescent protein as reporter protein for biomonitoring of cytotoxic effects in mammalian cells. Anal. Chim. Acta 427, 191 (2001)CrossRefGoogle Scholar
  29. 29.
    L. Milla, I. Cogno, M. Rodríguez, F. Sanz-Rodríguez, A. Zamarrón, Y. Gilaberte, E. Carrasco, V. Rivarola, A. Juarranz, Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy. J. Cell. Biochem. 112, 2266 (2011)CrossRefPubMedGoogle Scholar
  30. 30.
    V.G. Peddareddigari, D. Wang, R.N. Dubois, The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 3, 149 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    C. Koumenis, L. Coussens, A. Giaccia, E. Hammond, Tumor Microenvironment: Study Protocols, vol. 899 (Springer, 2016)Google Scholar
  32. 32.
    T. Tsujino, I. Seshimo, H. Yamamoto, C. Ngan, K. Ezumi, I. Takemasa, M. Ikeda, M. Sekimoto, N. Matsuura, M. Monden, Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin. Cancer Res. 13, 2082 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    G. Karagiannis, M. Pavlou, E. Diamandis, Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol. Oncol. 4, 496 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    H. Soares, J. Campos, L. Gomes-da-Silva, F. Schaberle, J. Dabrowski, L. Arnaut, Pro-oxidant and antioxidant effects in photodynamic therapy: Cells recognise that not all exogenous ROS are alike. Chembiochem 17, 836 (2016)CrossRefPubMedGoogle Scholar
  35. 35.
    M.D. Glidden, I. Massodi, I. Rizvi, J.P. Celli, T. Hasan, Probing tumor-stroma interactions and response to photodynamic therapy in a 3D pancreatic cancer-fibroblast co-culture model. Proc. SPIE 8210, 821006 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Lauber, A. Ernst, M. Orth, M. Herrmann, C. Belka, Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol. 2, 116 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    V. Carroll, M. Ashcroft, Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: Implications for targeting the HIF pathway. Cancer Res. 66, 6264 (2006)CrossRefPubMedGoogle Scholar
  38. 38.
    T. Wu, Y. Dai, Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61 (2017)CrossRefPubMedGoogle Scholar
  39. 39.
    S. Sant, P. Johnston, The production of 3D tumor spheroids for cancer drug discovery. Drug Discov. Today Technol. 23, 27 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    M. Zanoni, F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, A. Tesei, 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 19103 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    A. Amann, M. Zwierzina, G. Gamerith, M. Bitsche, J. Huber, G. Vogel, M. Blumer, S. Koeck, E. Pechriggl, J. Kelm, W. Hilbe, H. Zwierzina, Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells. PLoS One 9, e92511 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    L. Villarreal, O. Méndez, C. Salvans, J. Gregori, J. Baselga, J. Villanueva, Unconventional secretion is a major contributor of cancer cell line secretomes. Mol. Cell. Proteomics 12, 1046 (2013)CrossRefPubMedGoogle Scholar
  43. 43.
    G. Butler, C. Overall, proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat. Rev. Drug Discov. 8, 935 (2009)CrossRefPubMedGoogle Scholar
  44. 44.
    D. Radisky, M. Stallings-Mann, Y. Hirai, M. Bissell, Single proteins might have dual but related functions in intracellular and extracellular microenvironments. Nat. Rev. Mol. Cell Biol. 10, 228 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    D. Fukumura, R. Xavier, T. Sugiura, Y. Chen, E. Park, N. Lu, M. Selig, G. Nielsen, T. Taksir, R. Jain, B. Seed, Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715 (1998)CrossRefPubMedGoogle Scholar
  46. 46.
    R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer 6, 392 (2006)CrossRefPubMedGoogle Scholar
  47. 47.
    C. Holohan, S. Van Schaeybroeck, D. Longley, P. Johnston, Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 13, 714 (2013)CrossRefPubMedGoogle Scholar
  48. 48.
    S. Jung, H. Song, S. Park, S. Chung, Y. Kim, Pyruvate promotes tumor angiogenesis through HIF-1-dependent PAI-1 expression. Int. J. Oncol. 38, 571 (2011)PubMedGoogle Scholar
  49. 49.
    Y. Ahn, M. Chua, J.J. Whitlock, Y. Shin, W. Song, Y. Kim, C. Eom, W. An, Rodent-specific hypoxia response elements enhance PAI-1 expression through HIF-1 or HIF-2 in mouse hepatoma cells. Int. J. Oncol. 37, 1627 (2010)PubMedGoogle Scholar
  50. 50.
    S. Peng, G. Xue, L. Gong, C. Fang, J. Chen, C. Yuan, Z. Chen, L. Yao, B. Furie, M. Huang, A long-acting PAI-1 inhibitor reduce thrombus formation. Thromb. Haemost. 117, 1338 (2017)Google Scholar
  51. 51.
    G. McMahon, E. Petitclerc, S. Stefansson, E. Smith, M. Wong, R. Westrick, D. Ginsburg, P. Brooks, D. Lawrence, Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964 (2001)CrossRefPubMedGoogle Scholar
  52. 52.
    C. Isogai, W. Laug, H. Shimada, P. Declerck, M. Stins, D. Durden, A. Erdreich-Epstein, Y. DeClerck, Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res. 61, 5587 (2001)PubMedGoogle Scholar
  53. 53.
    R. Gozzelino, P. Arosio, Iron homeostasis in health and disease. Int. J. Mol. Sci. 17, (2016)Google Scholar
  54. 54.
    I. Toth, L. Yuan, J. Rogers, H. Boyce, K. Bridges, Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells. J. Biol. Chem. 274, 4467 (1999)CrossRefPubMedGoogle Scholar
  55. 55.
    L. Tacchini, L. Bianchi, A. Bernelli-Zazzera, G. Cairo, Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 274, 24142 (1999)CrossRefPubMedGoogle Scholar
  56. 56.
    L. Tacchini, E. Gammella, C. De Ponti, S. Recalcati, G. Cairo, Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J. Biol. Chem. 283, 20674 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    A. de Gassart, C. Geminard, B. Fevrier, G. Raposo, M. Vidal, Lipid raft-associated protein sorting in exosomes. Blood 102, 4336 (2003)CrossRefPubMedGoogle Scholar
  58. 58.
    A. Calzolari, C. Raggi, S. Deaglio, N. Sposi, M. Stafsnes, K. Fecchi, I. Parolini, F. Malavasi, C. Peschle, M. Sargiacomo, U. Testa, TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell Sci. Pt 21, 4486 (119AD)Google Scholar
  59. 59.
    M.I. Koukourakis, A. Giatromanolaki, A.L. Harris, E. Sivridis, Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632 (2006)CrossRefPubMedGoogle Scholar
  60. 60.
    G. van Niekerk, A. Engelbrecht, Role of PKM2 in directing the metabolic fate of glucose in cancer: A potential therapeutic target. Cell. Oncol. 41, 343 (2018)CrossRefGoogle Scholar
  61. 61.
    R. Han, F. Wang, P. Zhang, X. Zhou, Y. Li, miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasma 64 (2017)Google Scholar
  62. 62.
    T. He, Y. Zhang, H. Jiang, X. Li, H. Zhu, K. Zheng, The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med. Oncol. 32, 187 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    M. Capello, S. Ferri-Borgogno, P. Cappello, F. Novelli, α-Enolase: A promising therapeutic and diagnostic tumor target. FEBS J. 287, 1064 (2011)CrossRefGoogle Scholar
  64. 64.
    C. Hu, A. Sataur, L. Wang, H. Chen, M. Simon, The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol. Biol. Cell 18, 4528 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    G. Semenza, B. Jiang, S. Leung, R. Passantino, J. Concordet, P. Maire, A. Giallongo, Hypoxia response elements in the aldolase a, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 27, 32529 (1996)CrossRefGoogle Scholar
  66. 66.
    N. Denko, Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705 (2008)CrossRefPubMedGoogle Scholar
  67. 67.
    M. Demory Beckler, J. Higginbotham, J. Franklin, A. Ham, P. Halvey, I. Imasuen, C. Whitwell, M. Li, D. Liebler, R. Coffey, Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell. Proteomics 12, 343 (2013)CrossRefPubMedGoogle Scholar
  68. 68.
    R. Xu, D. Greening, A. Rai, H. Ji, R. Simpson, Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87, 11 (2015)CrossRefPubMedGoogle Scholar
  69. 69.
    D. Choi, J. Lee, G. Park, H. Lim, J. Bang, Y. Kim, K. Kwon, H. Kwon, K. Kim, Y. Gho, Proteomic analysis of microvesicles derived from human colorectal cancer cells. J. Proteome Res. 6, 4646 (2007)CrossRefPubMedGoogle Scholar
  70. 70.
    S. Mathivanan, J. Lim, B. Tauro, H. Ji, R. Moritz, R. Simpson, Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics 9, 197 (2010)CrossRefPubMedGoogle Scholar
  71. 71.
    R. Borer, C. Lehner, H. Eppenberger, E. Nigg, Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56, 379 (1989)CrossRefGoogle Scholar
  72. 72.
    R. Redner, Variations on a theme: The alternate translocations in APL. Leukemia 16, 1927 (2002)CrossRefPubMedGoogle Scholar
  73. 73.
    N. Yoneda-Kato, A. Look, M. Kirstein, M. Valentine, S. Raimondi, K. Cohen, A. Carroll, S. Morris, The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12, 265 (1996)PubMedGoogle Scholar
  74. 74.
    R. Chiarle, J. Gong, I. Guasparri, A. Pesci, J. Cai, J. Liu, W. Simmons, G. Dhall, J. Howes, R. Piva, G. Inghirami, NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101, 1919 (2003)CrossRefPubMedGoogle Scholar
  75. 75.
    N. van Belzen, M. Diesveld, A. van der Made, Y. Nozawa, W. Dinjens, R. Vlietstra, J. Trapman, F. Bosman, Identification of mRNAs that show modulated expression during colon carcinoma cell differentiation. Eur. J. Biochem. 234, 843 (1995)CrossRefPubMedGoogle Scholar
  76. 76.
    N. Feuerstein, J. Mond, Identification of a prominent nuclear protein associated with proliferation of normal and malignant B cells. J. Immunol. 139, 1818 (1987)PubMedGoogle Scholar
  77. 77.
    J. Li, X. Zhang, D. Sejas, G. Bagby, Q. Pang, Hypoxia-induced Nucleophosmin protects cell death through inhibition of p53. J. Biol. Chem. 279, 41275 (2004)CrossRefPubMedGoogle Scholar
  78. 78.
    D. Taylor, C. Gerçel-Taylor, Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305 (2005)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2019

Authors and Affiliations

  • María Julia Lamberti
    • 1
  • Mandy Rettel
    • 2
  • Jeroen Krijgsveld
    • 2
    • 3
  • Viviana Alicia Rivarola
    • 1
    Email author
  • Natalia Belén Rumie Vittar
    • 1
    Email author
  1. 1.Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y NaturalesUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.European Molecular Biology Laboratory (EMBL)HeidelbergGermany
  3. 3.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations