Cellular Oncology

, Volume 41, Issue 2, pp 213–221 | Cite as

Establishing cut-off points with clinical relevance for bcl-2, cyclin D1, p16, p21, p27, p53, Sox11 and WT1 expression in glioblastoma - a short report

  • Emma Camacho-Urkaray
  • Jorge Santos-Juanes
  • Francisco Borja Gutiérrez-Corres
  • Beatriz García
  • Luis M. Quirós
  • Isabel Guerra-Merino
  • José Javier Aguirre
  • Iván Fernández-Vega
Report

Abstract

Purpose

Glioblastoma (GBM) ranks among the most challenging cancers to treat and there is an urgent need for clinically relevant prognostic and diagnostic biomarkers. Here, we set out to investigate the expression of eight proteins (bcl-2, cyclin D1, p16, p21, p27, p53, Sox11 and WT1) in GBM with the specific aim to establish immunohistochemistry cut-off points with clinical relevance.

Methods

Immunohistochemistry (IHC) was used to examine protein expression in 55 surgical GBM specimens using H-scores, and IHC cut-off points were established using the Cutoff Finder web platform. Protein co-expression and its correlation with histopathological features were assessed, and cases were classified according to IDH1 mutation status. Survival curves were determined using Kaplan-Meier analyses.

Results

Clinical and molecular parameters found to be correlated with overall survival (OS) were tumor size (r = −0.278; p = 0.048), p53 (r = −0.452; p = 0.001), p16 (r = 0.351; p = 0.012) and Sox11 (r = 0.324; p = 0.020). In addition, we found that tumor size correlated with cyclin D1 (r = −0.282; p = 0.037), p53 (r = 0.269; p = 0.041), Sox11 (r = −0.309; p = 0.022) and WT1 (r = −0.372; p = 0.003). Variables found to be significantly associated with IDH1 mutation status were OS (p < 0.01), age (p < 0.01), cyclin D1 (p = 0.046), p16 (p = 0.019) and Sox11 (p = 0.012). Variables found to be significantly associated with a poor survival were tumor size >5 cm (p < 0.001), bcl-2 score > 40 (p = 0.034), cyclin D1 score ≤ 70 (p = 0.004), p16 score ≤ 130 (p = 0.005), p53 score > 20 (p = 0.003), Sox11 score ≤ 40 (p < 0.001) and WT1 score ≤ 270 (p = 0.02).

Conclusions

Correlations between protein biomarkers and main clinical GBM variables were identified. The establishment of distinct biomarker cut-off points may enable clinicians and pathologists to better weigh their prognostic value.

Keywords

Glioblastoma IHC cut-off points bcl-2 cyclin D1 p16 p21 p27 p53 Sox11 WT1 

Notes

Acknowledgements

This work was fully supported by the Pathology Department at Hospital Universitario de Araba.

Author contributions

IFV and ECU conducted the diagnosis of GBM, carried out the TMA preparations and performed the coordination of the study. Immunohistochemistry was carried out by FBGC. Data analyses were performed by JSJ and JJA. ECU and IFV reviewed the stains, contributed to the data analyses and drafted the manuscript. BG, IGM and LMQ provided technical support and critically reviewed the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    B. Tran, M.A. Rosenthal, Survival comparison between glioblastoma multiforme and other incurable cancers. J Clin Neurosci 17, 417–421 (2010).  https://doi.org/10.1016/j.jocn.2009.09.004 CrossRefPubMedGoogle Scholar
  2. 2.
    M. Touat, A. Idbaih, M. Sanson, K.L. Ligon, Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 28, 1457–1472 (2017).  https://doi.org/10.1093/annonc/mdx106
  3. 3.
    H.J. Anderson, D.S. Galileo, Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell Oncol 39, 229–242 (2016).  https://doi.org/10.1007/s13402-016-0267-7 CrossRefGoogle Scholar
  4. 4.
    D. Matias, J. Balca-Silva, L.G. Dubois, B. Pontes, V.P. Ferrer, L. Rosario, A. do Carmo, J. Echevarria-Lima, A.B. Sarmento-Ribeiro, M.C. Lopes, V. Moura-Neto, Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol 40, 247–261 (2017).  https://doi.org/10.1007/s13402-017-0320-1 CrossRefGoogle Scholar
  5. 5.
    R. Fisher, L. Pusztai, C. Swanton, Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108, 479–485 (2013).  https://doi.org/10.1038/bjc.2012.581 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    H. Ohgaki, P. Kleihues, Epidemiology and etiology of gliomas. Acta Neuropathol 109, 93–108 (2005).  https://doi.org/10.1007/s00401-005-0991-y CrossRefPubMedGoogle Scholar
  7. 7.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedGoogle Scholar
  8. 8.
    K.E. Tagscherer, A. Fassl, B. Campos, M. Farhadi, A. Kraemer, B.C. Bock, S. Macher-Goeppinger, B. Radlwimmer, O.D. Wiestler, C. Herold-Mende, W. Roth, Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27, 6646–6656 (2008).  https://doi.org/10.1038/onc.2008.259 CrossRefPubMedGoogle Scholar
  9. 9.
    M.C. Casimiro, M. Crosariol, E. Loro, Z. Li, R.G. Pestell, Cyclins and cell cycle control in cancer and disease. Genes Cancer 3, 649–657 (2012).  https://doi.org/10.1177/1947601913479022 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    J. Wang, Q. Wang, Y. Cui, Z.Y. Liu, W. Zhao, C.L. Wang, Y. Dong, L. Hou, G. Hu, C. Luo, J. Chen, Y. Lu, Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. J Neuro-Oncol 106, 473–484 (2012).  https://doi.org/10.1007/s11060-011-0692-4 CrossRefGoogle Scholar
  11. 11.
    Y. Jin, W. Xiao, T. Song, G. Feng, Z. Dai, Expression and prognostic significance of p53 in Glioma patients: a meta-analysis. Neurochem Res 41, 1723–1731 (2016).  https://doi.org/10.1007/s11064-016-1888-y CrossRefPubMedGoogle Scholar
  12. 12.
    C.D. James, p53 in malignant glioma: 20 years later and still much to learn. Neuro-Oncology 12, 421 (2010).  https://doi.org/10.1093/neuonc/noq037 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    B. Weigle, R. Ebner, A. Temme, S. Schwind, M. Schmitz, A. Kiessling, M.A. Rieger, G. Schackert, H.K. Schackert, E.P. Rieber, Highly specific overexpression of the transcription factor SOX11 in human malignant gliomas. Oncol Rep 13, 139–144 (2005)PubMedGoogle Scholar
  14. 14.
    Y. Nakahara, H. Okamoto, T. Mineta, K. Tabuchi, Expression of the Wilms' tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathol 21(3), 113–116 (2004).  https://doi.org/10.1007/BF02482185 CrossRefPubMedGoogle Scholar
  15. 15.
    P. Korkolopoulou, G. Levidou, E.A. El-Habr, C. Adamopoulos, P. Fragkou, E. Boviatsis, M.S. Themistocleous, K. Petraki, G. Vrettakos, M. Sakalidou, V. Samaras, A. Zisakis, A. Saetta, I. Chatziandreou, E. Patsouris, C. Piperi, Sox11 expression in astrocytic gliomas: correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Br J Cancer 108, 2142–2152 (2013).  https://doi.org/10.1038/bjc.2013.176 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    N. Hashimoto, Cancer immunotherapy for Gliomas: overview and future directions. Neurol Med Chir 56, 355–360 (2016).  https://doi.org/10.2176/nmc.ra.2015-0310 CrossRefGoogle Scholar
  17. 17.
    Y. Chiba, N. Hashimoto, A. Tsuboi, C. Rabo, Y. Oka, M. Kinoshita, N. Kagawa, Y. Oji, H. Sugiyama, T. Yoshimine, Prognostic value of WT1 protein expression level and MIB-1 staining index as predictor of response to WT1 immunotherapy in glioblastoma patients. Brain Tumor Pathol 27(1), 29–34 (2010).  https://doi.org/10.1007/s10014-010-0265-9 CrossRefPubMedGoogle Scholar
  18. 18.
    D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6), 803–820 (2016).  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  19. 19.
    J. Mazieres, W. Brugger, F. Cappuzzo, P. Middel, A. Frosch, I. Bara, G. Klingelschmitt, B. Klughammer, Evaluation of EGFR protein expression by immunohistochemistry using H-score and the magnification rule: re-analysis of the SATURN study. Lung Cancer 82(2), 231–237 (2013).  https://doi.org/10.1016/j.lungcan.2013.07.016 CrossRefPubMedGoogle Scholar
  20. 20.
    F.R. Hirsch, M. Varella-Garcia, P.A. Bunn Jr., M.V. Di Maria, R. Veve, R.M. Bremmes, A.E. Baron, C. Zeng, W.A. Franklin, Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21, 3798–3807 (2003).  https://doi.org/10.1200/JCO.2003.11.069 CrossRefPubMedGoogle Scholar
  21. 21.
    H. Yan, D.W. Parsons, G. Jin, R. McLendon, B.A. Rasheed, W. Yuan, I. Kos, I. Batinic-Haberle, S. Jones, G.J. Riggins, H. Friedman, A. Friedman, D. Reardon, J. Herndon, K.W. Kinzler, V.E. Velculescu, B. Vogelstein, D.D. Bigner, IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8), 765–773 (2009).  https://doi.org/10.1056/NEJMoa0808710 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    S. Nobusawa, T. Watanabe, P. Kleihues, H. Ohgaki, IDH1 mutations as molecular signature and predictive factor of secondary Glioblastomas. Clin Cancer Res 15, 6002–6007 (2009).  https://doi.org/10.1158/1078-0432.CCR-09-0715 CrossRefPubMedGoogle Scholar
  23. 23.
    M. Sanson, Y. Marie, S. Paris, A. Idbaih, J. Laffaire, F. Ducray, S. El Hallani, B. Boisselier, K. Mokhtari, K. Hoang-Xuan, J.Y. Delattre, Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27, 4150–4154 (2009).  https://doi.org/10.1200/JCO.2009.21.9832 CrossRefPubMedGoogle Scholar
  24. 24.
    H. Ohgaki, P. Dessen, B. Jourde, S. Horstmann, T. Nishikawa, P.L. Di Patre, C. Burkhard, D. Schuler, N.M. Probst-Hensch, P.C. Maiorka, N. Baeza, P. Pisani, Y. Yonekawa, M.G. Yasargil, U.M. Lutolf, P. Kleihues, Genetic pathways to glioblastoma: a population-based study. Cancer Res 64, 6892–6899 (2004).  https://doi.org/10.1158/0008-5472.CAN-04-1337 CrossRefPubMedGoogle Scholar
  25. 25.
    R.G. Verhaak, K.A. Hoadley, E. Purdom, V. Wang, Y. Qi, M.D. Wilkerson, C.R. Miller, L. Ding, T. Golub, J.P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B.A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H.S. Feiler, J.G. Hodgson, C.D. James, J.N. Sarkaria, C. Brennan, A. Kahn, P.T. Spellman, R.K. Wilson, T.P. Speed, J.W. Gray, M. Meyerson, G. Getz, C.M. Perou, D.N. Hayes, N. Cancer Genome Atlas Research, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010).  https://doi.org/10.1016/j.ccr.2009.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    A. Cohen, S. Holmen, H. Colman, IDH1 and IDH2 mutations in Gliomas. Curr Neurol Neurosci Rep 13(5), 345–345 (2013).  https://doi.org/10.1007/s11910-013-0345-4 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    A. Amelot, P. De Cremoux, V. Quillien, M. Polivka, H. Adle-Biassette, J. Lehmann-Che, L. Françoise, A.F. Carpentier, B. George, E. Mandonnet, S. Froelich, IDH-Mutation Is a weak predictor of long-term survival in glioblastoma patients. PLoS ONE 10, e0130596 (2015).  https://doi.org/10.1371/journal.pone.0130596 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    R.J. Molenaar, D. Verbaan, S. Lamba, C. Zanon, J.W.M. Jeuken, S.H.E. Boots-Sprenger, P. Wesseling, T.J.M. Hulsebos, D. Troost, A.A. van Tilborg, S. Leenstra, W.P. Vandertop, A. Bardelli, C.J.F. van Noorden, F.E. Bleeker, The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncology 16, 1263–1273 (2014).  https://doi.org/10.1093/neuonc/nou005 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    M. Mellai, A. Piazzi, V. Caldera, O. Monzeglio, P. Cassoni, G. Valente, D. Schiffer, IDH1 and IDH2 mutations, immunohistochemistry and associations in a series of brain tumors. J Neuro-Oncol 105(2), 345 (2011).  https://doi.org/10.1007/s11060-011-0596-3 CrossRefGoogle Scholar
  30. 30.
    A.X. Ming Li, D. Floyd, I. Olmez, J. Lee, J. Godlewski, A. Bronisz, K.P.L. Bhat, E.P. Sulman, I. Nakano, B. Purow, CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget 8, 12 (2017)Google Scholar
  31. 31.
    J.P. Alao, The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6, 24 (2007).  https://doi.org/10.1186/1476-4598-6-24 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    B. Schwartz, C. Avivi-Green, S. Polak-Charcon, Sodium butyrate induces retinoblastoma protein dephosphorylation, p16 expression and growth arrest of colon cancer cells. Mol Cell Biochem 188, 21–30 (1998).  https://doi.org/10.1023/A:1006831330340 CrossRefPubMedGoogle Scholar
  33. 33.
    H.S. Phillips, S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A. Misra, J.M. Nigro, H. Colman, L. Soroceanu, P.M. Williams, Z. Modrusan, B.G. Feuerstein, K. Aldape, Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173Google Scholar
  34. 34.
    T.A. Doucette, G. Rao, B-cell lymphoma-2 promotes malignant progression in glioma. Clin Neurosurg 58, 149–154 (2011).  https://doi.org/10.1227/NEU.0b013e3182269d15 CrossRefPubMedGoogle Scholar
  35. 35.
    S.S.C. Romagosa, L. López-Vicente, A. Mazo, M.E. Lleonart, J. Castellvi, S. Ramon y Cajal, p16 (Ink4) a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30, 10 (2011)CrossRefGoogle Scholar
  36. 36.
    F.S. Pardo, D.W. Hsu, R. Zeheb, J.T. Efird, P.G. Okunieff, D.M. Malkin, Mutant, wild type, or overall p53 expression: freedom from clinical progression in tumours of astrocytic lineage. Br J Cancer 91(9), 1678–1686 (2004).  https://doi.org/10.1038/sj.bjc.6602161 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    N. Kijima, N. Hosen, N. Kagawa, N. Hashimoto, M. Kinoshita, Y. Oji, H. Sugiyama, T. Yoshimine, Wilms' tumor 1 is involved in tumorigenicity of glioblastoma by regulating cell proliferation and apoptosis. Anticancer Res 34, 61–67 (2014)PubMedGoogle Scholar
  38. 38.
    S. Izumoto, A. Tsuboi, Y. Oka, T. Suzuki, T. Hashiba, N. Kagawa, N. Hashimoto, M. Maruno, O.A. Elisseeva, T. Shirakata, M. Kawakami, Y. Oji, S. Nishida, S. Ohno, I. Kawase, J. Hatazawa, S. Nakatsuka, K. Aozasa, S. Morita, J. Sakamoto, H. Sugiyama, T. Yoshimine, Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme, J Neurosurg 108(5), 963–971 (2008).  https://doi.org/10.3171/JNS/2008/108/5/0963 CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2017

Authors and Affiliations

  • Emma Camacho-Urkaray
    • 1
  • Jorge Santos-Juanes
    • 2
  • Francisco Borja Gutiérrez-Corres
    • 1
  • Beatriz García
    • 3
    • 4
  • Luis M. Quirós
    • 3
    • 4
  • Isabel Guerra-Merino
    • 1
  • José Javier Aguirre
    • 1
  • Iván Fernández-Vega
    • 1
    • 2
    • 4
  1. 1.Department of PathologyHospital Universitario de Araba-TxagorritxuVitoria-GasteizSpain
  2. 2.Department of PathologyHospital Universitario Central de AsturiasOviedoSpain
  3. 3.Department of Functional BiologyUniversity of OviedoOviedoSpain
  4. 4.Instituto Universitario Fernández-VegaOviedoSpain

Personalised recommendations