Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae

  • Omama Rehman
  • Ayesha Shahid
  • Chen-Guang Liu
  • Jian-Ren Xu
  • Muhammad Rizwan Javed
  • Neveen Hassan Eid
  • Munazza Gull
  • Muhammad NawazEmail author
  • Muhammad Aamer MehmoodEmail author
Original Article


Leaves of Conocarpus erectus are potential feedstock for bioethanol production due to their lower lignin and higher cellulosic content and are among one of the least explored biomass sources. The present study reported a low-temperature (90 °C) energy-efficient pretreatment method for the release of fermentable sugars from C. erectus leaves and its conversion into bioethanol by using industrial and lab yeast strains. Optimization of process parameters was performed by monitoring glucose utilization and ethanol production. The maximum glucose concentration of 12 g L−1 and 19.75 g L−1 were obtained after the low-temperature (90 °C) pretreatment and enzymatic saccharification, respectively. The optimum enzymatic assay conditions were with 10% biomass and enzyme loading of 30 FPU/g cellulose, resulting in the release of ~ 20 g L−1 of glucose from pretreated biomass which is equivalent to the glucose concentration in standard growth media. Hydrolysate fermentation by S. cerevisiae strains SPSC01, ER, YB2625, and 6525 exhibited highest ethanol yields of 0.47 g g−1 and 0.46 g g−1 which is the highest ever reported for C. erectus even under acetic acid stress, where a fermentation efficiency of 92.3% was achieved. The present study may lead to establishing low-cost, energy-efficient biological conversion of C. erectus to ethanol.


Low-temperature pretreatment C. erectus Fermentation efficiency Bioethanol S. cerevisiae 


Funding information

The authors are thankful to Higher Education Commission (HEC), Pakistan, for the financial support.

Compliance with ethical standards

Conflict of interest

Authors declare that there are no competing interests.


  1. 1.
    Wyman CE, Cai CM, Kumar R (2019) Bioethanol from lignocellulosic biomass. Energy from Organic Materials (Biomass) A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition:997-1022Google Scholar
  2. 2.
    Li X, Xing Y, Jiang Y, Ding Y, Li W (2009) Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44(11):2161–2168CrossRefGoogle Scholar
  3. 3.
    Corredores MMR, Iglesias VS (2014) Production of renewable biofuels. Google Patents,Google Scholar
  4. 4.
    Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2(1):152–195CrossRefGoogle Scholar
  5. 5.
    Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211CrossRefGoogle Scholar
  6. 6.
    Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust 38(4):449–467CrossRefGoogle Scholar
  7. 7.
    Mehmood MA, Shahid A, Xiong L, Ahmad N, Liu C, Bai F, Zhao X (2017) Development of synthetic microbial platforms to convert lignocellulosic biomass to biofuels. In: Advances in Bioenergy, vol 2. Elsevier, pp 233-278Google Scholar
  8. 8.
    Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J (2016) Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. Biotechnol Biofuels 9(1):200CrossRefGoogle Scholar
  9. 9.
    Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16CrossRefGoogle Scholar
  10. 10.
    Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Factories 9(1):79CrossRefGoogle Scholar
  11. 11.
    Hegazy SS, Aref IM, Al-Mefarrej H, El-Juhany LI (2008) Effect of spacing on the biomass production and allocation in Conocarpus erectus L. trees grown in Riyadh, Saudi Arabia. Saudi J Biol Sci 15(2):315–322Google Scholar
  12. 12.
    Aref I, El-Juhany L, Nasroon T (1999) Pattern of above-ground biomass production and allocation in Leucaena leucocephala trees when planted at different spacing. Saudi J Biol Sci 6(1):27–34Google Scholar
  13. 13.
    Little Jr EL (1983) Common fuelwood crops. A handbook for their identification. Common fuelwood crops A handbook for their identificationGoogle Scholar
  14. 14.
    Nasser RA (2008) Specific gravity, fiber length and chemical components of Conocarpus erectus as affected by tree spacing. J Agri Env Sci 7(3):49–68Google Scholar
  15. 15.
    do Nascimento Santos DKD, de Oliveira Melo WH, de Oliveira Lima ANM, da Cruz Filho IJ, de Souza Lima GM, da Silva TD, de Moura MC, do Nascimento MS, Maior AMS, Napoleão TH (2018) Conocarpus erectus L., a plant with a high content of structural sugars, ions and phenolic compounds, shows antioxidant and antimicrobial properties promoted by different organic fractions. Asian Pac J Trop Biomed 8(9):463CrossRefGoogle Scholar
  16. 16.
    Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36(8):1085–1091CrossRefGoogle Scholar
  17. 17.
    Nigam J (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90(2):208–215CrossRefGoogle Scholar
  18. 18.
    Zhao X-Q, Li Q, He L-Y, Li F, Que W-W, Bai F-W (2012) Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochem 47(11):1612–1619CrossRefGoogle Scholar
  19. 19.
    Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRefGoogle Scholar
  20. 20.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (TP-510-42618)Google Scholar
  21. 21.
    Láinez M, Ruiz HA, Arellano-Plaza M, Martínez-Hernández S (2019) Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus. Renew Energy 138:1127–1133CrossRefGoogle Scholar
  22. 22.
    Tomlins K et al (1990) HPLC method for the analysis of organic acids, sugars, and alcohol in extracts of fermenting cocoa beans. Chromatographia 29(11-12):557–561CrossRefGoogle Scholar
  23. 23.
    He L-Y, Zhao X-Q, Bai F-W (2012) Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production. Appl Energy 100:33–40CrossRefGoogle Scholar
  24. 24.
    Zaky AS, Pensupa N, Andrade-Eiroa Á, Tucker GA, Du C (2017) A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. J Food Compos Anal 56:25–33CrossRefGoogle Scholar
  25. 25.
    Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C (2016) Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express 6(1):107CrossRefGoogle Scholar
  26. 26.
    Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Factories 10(1):2CrossRefGoogle Scholar
  27. 27.
    Li W-C, Zhu J-Q, Zhao X, Qin L, Xu T, Zhou X, Li X, Li B-Z, Yuan Y-J (2019) Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies. Renew Energy 139:1176–1183CrossRefGoogle Scholar
  28. 28.
    Huang S, Liu T, Peng B, Geng A (2019) Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioprocess Biosyst Eng 42(5):883–896 1-14CrossRefGoogle Scholar
  29. 29.
    Zhang M-M, Xiong L, Tang Y-J, Mehmood MA, Zhao ZK, Bai F-W, Zhao X-Q (2019) Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol Biofuels 12(1):116CrossRefGoogle Scholar
  30. 30.
    Ragab TI, Shawky BT, Hussein HM, Zahran MK (2018) Using local agricultural residues for bioethanol production under full optimized processes. Asian J Agri Biol 6(3):345–356Google Scholar
  31. 31.
    Rezania S, Din MFM, Mohamad SE, Sohaili J, Taib SM, Yusof MBM, Kamyab H, Darajeh N, Ahsan A (2017) Review on pretreatment methods and ethanol production from cellulosic water hyacinth. BioResources 12(1):2108–2124Google Scholar
  32. 32.
    Nguyen TH, Sunwoo IY, Jeong G-T, Kim S-K (2019) Detoxification of hydrolysates of the red seaweed Gelidium amansii for improved bioethanol production. Appl Biochem Biotechnol 188(4):977–990 1-14CrossRefGoogle Scholar
  33. 33.
    Robak K, Balcerek M, Dziekońska-Kubczak U, Dziugan P (2019) Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw. Biotechnol Prog 35(3):e2789CrossRefGoogle Scholar
  34. 34.
    Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA (2019) Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnol Biofuels 12(1):40CrossRefGoogle Scholar
  35. 35.
    Ko JK, Um Y, Woo HM, Kim KH, Lee S-M (2016) Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour Technol 209:290–296CrossRefGoogle Scholar
  36. 36.
    Gomaa MA, Al-Makhmari M, Al-Hinai MA (2019) Comparing bioethanol production using buttonwood (Conocarpus erectus) and date palm (Phoenix dactylifera) leaves as raw material. Biofuels 1-7Google Scholar
  37. 37.
    Parreiras LS, Breuer RJ, Narasimhan RA, Higbee AJ, La Reau A, Tremaine M, Qin L, Willis LB, Bice BD, Bonfert BL (2014) Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One 9(9):e107499CrossRefGoogle Scholar
  38. 38.
    Novy V, Krahulec S, Wegleiter M, Müller G, Longus K, Klimacek M, Nidetzky B (2014) Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 7(1):49CrossRefGoogle Scholar
  39. 39.
    Ayutthaya PPN, Charoenrat T, Krusong W, Pornpukdeewattana S (2019) Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech 9(3):76CrossRefGoogle Scholar
  40. 40.
    Cabañas KT, Peña-Moreno IC, Parente DC, García AB, Gutiérrez RG, de Morais Jr MA (2019) Selection of Saccharomyces cerevisiae isolates for ethanol production in the presence of inhibitors. 3. Biotech 9(1):6Google Scholar
  41. 41.
    Westman JO, Wang R, Novy V, Franzén CJ (2017) Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw. Biotechnol Biofuels 10(1):213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Omama Rehman
    • 1
    • 2
  • Ayesha Shahid
    • 2
  • Chen-Guang Liu
    • 3
  • Jian-Ren Xu
    • 3
  • Muhammad Rizwan Javed
    • 2
  • Neveen Hassan Eid
    • 4
  • Munazza Gull
    • 4
  • Muhammad Nawaz
    • 1
    Email author
  • Muhammad Aamer Mehmood
    • 2
    • 3
    Email author
  1. 1.Department of BotanyGovernment College University FaisalabadFaisalabadPakistan
  2. 2.Bioenergy Research Centre, Department of Bioinformatics and BiotechnologyGovernment College University FaisalabadFaisalabadPakistan
  3. 3.State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Biochemistry DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations