Advertisement

Hydrothermal synthesis of high specific capacitance electrode material using porous bagasse biomass carbon hosting MnO2 nanospheres

  • Shanxin XiongEmail author
  • Yan He
  • Xiangkai Zhang
  • Bohua Wu
  • Jia Chu
  • Xiaoqin Wang
  • Runlan Zhang
  • Ming Gong
  • Zhen Li
  • Zhenming ChenEmail author
Original Article
  • 2 Downloads

Abstract

In this article, a high specific capacitance biomass carbon/MnO2 nanocomposites electrode materials were prepared by hydrothermal method. The porous sugarcane bagasse based biomass carbon was used as the host to load MnO2 nanospheres. The final obtained nanocomposites exhibit high specific capacitance. Besides, the effects of different electrolytes on the electrochemical properties of sugarcane bagasse carbon (SBC)/MnO2 nanosphere composites (SBC/MnO2) were also investigated. In comparison with MnO2 nanospheres, the specific capacitances of the SBC/MnO2 composite materials are improved whether in alkaline electrolyte or neutral electrolyte. Especially, in 1 M Na2SO4 electrolyte, the specific capacitance of SBC/MnO2 composite is up to 747 F·g−1 at a current density of 1 A·g−1, which is much higher than the MnO2 nanospheres at the same current density. At the same time, after 1000 cycles of charge–discharge process in a neutral electrolyte, the specific capacitance retention of SBC/MnO2 composite reaches 77%.

Keywords

MnO2 nanospheres Bagasse biomass carbon Electrolyte Specific capacitance 

Notes

Acknowledgments

This work was supported by Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201804), Natural Science Foundation of Shaanxi Province, China (2018JM5027), and Peak Plan of Xi’an University of Science and Technology (2018GG-2-09).

Supplementary material

13399_2019_525_MOESM1_ESM.docx (935 kb)
ESM 1 (DOCX 934 kb)

References

  1. 1.
    Fan HL, Ran F, Zhang XX, Song HM, Niu XQ, Kong LB, Kang L (2014) Hollow carbon microspheres/MnO2 nanosheets composites: hydrothermal synthesis and electrochemical behaviors. Nano-Micro Lett 7:59–67CrossRefGoogle Scholar
  2. 2.
    Wong SI, Sunarso J, Wong BT, Lin H, Yu A, Jia B (2018) Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directions. J Power Sources 396:182–206CrossRefGoogle Scholar
  3. 3.
    Singu BS, Hong SE, Yoon KR (2017) Honeycomb-like manganese oxide nanospheres for redox supercapacitors. Ionics 24:523–528CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34:4889–4899CrossRefGoogle Scholar
  5. 5.
    Cheng BH, Zeng RJ, Jiang H (2017) Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour Technol 246:224–233CrossRefGoogle Scholar
  6. 6.
    Zhang GQ, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3:1470CrossRefGoogle Scholar
  7. 7.
    Wang GM, Lu XH, Ling YC, Zhai T, Wang HY, Tong YX, Li Y (2012) LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6:10296–10302CrossRefGoogle Scholar
  8. 8.
    Xiong SX, Wang YC, Chu J, Wang XQ, Zhang RL, Gong M, Wu BH, Li Z (2019) One-pot hydrothermal synthesis of polyaniline nanofibers/reduced graphene oxide nanocomposites and their supercapacitive properties. High Perform Polym 31:1238–1247CrossRefGoogle Scholar
  9. 9.
    Xiong SX, Shi YJ, Chu J, Gong M, Wu BH, Wang XQ (2014) Preparation of high-performance covalently bonded polyaniline nanorods/graphene supercapacitor electrode materials using interfacial copolymerization approach. Electrochim Acta 127:139–145CrossRefGoogle Scholar
  10. 10.
    Wang XQ, Li QQ, Yang NN, Yang YF, He F, Chu J, Gong M, Wu BH, Zhang RL, Xiong SX (2019) Hydrothermal synthesis of NiCo-based bimetal-organic frameworks as electrode materials for supercapacitors. J Solid State Chem 270:370–378CrossRefGoogle Scholar
  11. 11.
    Kou TY, Yao B, Liu TY, Li Y (2017) Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J Mater Chem A 5:17151–17173CrossRefGoogle Scholar
  12. 12.
    Ho MY, Khiew PS, Isa D, Tan TK, Chiu WS, Chia CH (2014) A review of metal oxide composite electrode materials for electrochemical capacitors. Nano 09:1430002CrossRefGoogle Scholar
  13. 13.
    Chu J, Lu DY, Ma J, Wang M, Wang XQ, Xiong SX (2017) Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors. Mater Lett 193:263–265CrossRefGoogle Scholar
  14. 14.
    Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRefGoogle Scholar
  15. 15.
    Xiong SX, Zhang XK, Chu J, Wang XQ, Zhang RL, Gong M, Wu BH (2018) Hydrothermal synthesis of porous sugarcane bagasse carbon/MnO2 nanocomposite for supercapacitor application. J Electron Mater 47:6575–6582CrossRefGoogle Scholar
  16. 16.
    Liu JL, Zhang YQ, Li YP, Li J, Chen ZH, Feng HB, Li JH, Jiang JB, Qian D (2015) In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior. Electrochim Acta 173:148–155CrossRefGoogle Scholar
  17. 17.
    Sari FNI, Lin HM, Ting JM (2016) Surface modified catalytically grown carbon nanofibers/MnO2 composites for use in supercapacitor. Thin Solid Films 620:54–63CrossRefGoogle Scholar
  18. 18.
    Wang J, Liu JH, Zhao XB, Li GL, Wei BQ (2012) Synthesis of nano-MnO2/CNTs composite and electrochemical properties as electrode material for supercapacitor. Adv Mater Res 512-515:1005–1008CrossRefGoogle Scholar
  19. 19.
    Lee H, Park SH, Kim SJ, Park YK, Kim BJ, An KH, Ki SJ, Jung SC (2015) Synthesis of manganese oxide/activated carbon composites for supercapacitor application using a liquid phase plasma reduction system. Int J Hydrog Energy 40:754–759CrossRefGoogle Scholar
  20. 20.
    Yan J, Zj F, Wei T, Qian WZ, Zhang ML, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833CrossRefGoogle Scholar
  21. 21.
    Zhang ZK, Zhu ZY, Shen BX, Liu LN (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598CrossRefGoogle Scholar
  22. 22.
    Zhang MD, Yu C, Ling Z, Yu JH, Li SF, Zhao CT, Huang HL, Qiu JS (2019) Recyclable route to produce biochar with tailored structure and surface chemistry for enhanced charge storage. Green Chem 21:2095–2103CrossRefGoogle Scholar
  23. 23.
    Pourhosseini SEM, Norouzi O, Salimi P, Naderi HR (2018) Synthesis of a novel interconnected 3D pore network algal biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes. ACS Sustain Chem Eng 6:4746–4758CrossRefGoogle Scholar
  24. 24.
    Chang CS, Wang H, Zhang YQ, Wang SL, Liu X, Li L (2019) Fabrication of hierarchical porous carbon frameworks from metal-ion-assisted step-activation of biomass for supercapacitors with ultrahigh capacitance. ACS Sustain Chem Eng 7:10763–10772CrossRefGoogle Scholar
  25. 25.
    Zhang GF, Zhang J, Qin Q, Cui YX, Luo WH, Sun Y, Jin C, Zheng WJ (2017) Tensile force induced tearing and collapse of ultrathin carbon shells to surface-wrinkled grape skins for high performance supercapacitor electrodes. J Mater Chem A 5:14190–14197CrossRefGoogle Scholar
  26. 26.
    Martínez-Casillas DC, Alonso-Lemus IL, Mascorro-Gutiérrez I, Cuentas-Gallegos AK (2018) Leather waste-derived biochar with high performance for supercapacitors. J Electrochem Soc 165:A2061–A2068CrossRefGoogle Scholar
  27. 27.
    Olivares-Marín M, Fernández JA, Lázaro MJ, Fernández-González C, Macías-García A, Gómez-Serrano V, Stoeckli F, Centeno TA (2009) Cherry stones as precursor of activated carbons for supercapacitors. Mater Chem Phys 114:323–327CrossRefGoogle Scholar
  28. 28.
    Song MY, Zhou YH, Ren X, Wan JF, Du YY, Wu G, Ma FW (2018) Biowaste-based porous carbon for supercapacitor: the influence of preparation processes on structure and performance. J Colloid Interface Sci 535:276–286CrossRefGoogle Scholar
  29. 29.
    Jiang JH, Zhang L, Wang XY, Holm N, Rajagopalan K, Chen FL, Ma SG (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489CrossRefGoogle Scholar
  30. 30.
    Jain A, Tripathi SK (2014) Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Mater Sci Eng B 183:54–60CrossRefGoogle Scholar
  31. 31.
    Xu XY, Gao JP, Tian Q, Zhai XG, Liu Y (2017) Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. Appl Surf Sci 411:170–176CrossRefGoogle Scholar
  32. 32.
    Chen J, Qiu JH, Wang B, Feng HX, Yu YL, Sakai E (2017) Manganese dioxide/biocarbon composites with superior performance in supercapacitors. J Electroanal Chem 791:159–166CrossRefGoogle Scholar
  33. 33.
    Li L, Qin ZY, Wang LF, Liu HJ, Zhu MF (2010) Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. J Nanopart Res 12:2349–2353CrossRefGoogle Scholar
  34. 34.
    Liu Y, Yan D, Zhuo RF, Li SK, Wu ZG, Wang J, Ren PY, Yan PX, Geng ZR (2013) Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors. J Power Sources 242:78–85CrossRefGoogle Scholar
  35. 35.
    Chen QY, Chen JZ, Zhou YY, Song C, Tian QH, Xu JL, Wong CP (2018) Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Appl Surf Sci 440:1027–1036CrossRefGoogle Scholar
  36. 36.
    Li B, Fu YS, Xia H, Wang X (2014) High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Mater Lett 122:193–196CrossRefGoogle Scholar
  37. 37.
    Yang WJ, Zhu YF, You F, Yan L, Ma YJ, Lu CY, Gao PQ, Hao Q, Li WL (2018) Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2. Appl Catal B 233:184–193CrossRefGoogle Scholar
  38. 38.
    Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135:3494–3501CrossRefGoogle Scholar
  39. 39.
    Ding JT, Yang J, Ji S, Huo SH, Wang H (2018) Core–shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors. Ionics 25:665–673CrossRefGoogle Scholar
  40. 40.
    Vijayalakshmi K, Jereil SD, Alagusundaram K (2015) Dependence of pyrolytic temperature on the growth of high quality MnO2 nanofibers. Superlattice Microst 85:789–797CrossRefGoogle Scholar
  41. 41.
    Dorina M, Chipara AC, Chipara M (2011) Raman spectroscopy of carbonaceous materials: a concise review. Spectroscopy 26:42Google Scholar
  42. 42.
    Inal IG, Holmes SM, Banford A, Aktas Z (2015) The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci 357:696–703CrossRefGoogle Scholar
  43. 43.
    Gao Z, Song NN, Li XD (2015) Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J Mater Chem A 3:14833–14844CrossRefGoogle Scholar
  44. 44.
    Miao FJ, Shao CL, Li XH, Wang KX, Lu N, Liu YC (2016) Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J Power Sources 329:516–524CrossRefGoogle Scholar
  45. 45.
    Liao F, Han XG, Cheng DH, Zhang YF, Han XH, Xu CJ, Chen HY (2018) MnO2 hierarchical microspheres assembled from porous nanoplates for high-performance supercapacitors. Ceram Int 45:1058–1066CrossRefGoogle Scholar
  46. 46.
    Wan CH, Jiao Y, Li J (2016) Core–shell composite of wood-derived biochar supported MnO2 nanosheets for supercapacitor applications. RSC Adv 6:64811–64817CrossRefGoogle Scholar
  47. 47.
    Li HP, Wang B, He XY, Xiao J, Zhang HS, Liu Q, Liu JY, Wang J, Liu LH, Wang P (2015) Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO2 nanosheets for high-performance supercapacitors. J Mater Chem A 3:9754–9762CrossRefGoogle Scholar
  48. 48.
    Wang JG, Kang FY, Wei BQ (2015) Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog Mater Sci 74:51–124CrossRefGoogle Scholar
  49. 49.
    Xu CJ, Li BH, Du HD, Kang FY, Zeng YQ (2008) Supercapacitive studies on amorphous MnO2 in mild solutions. J Power Sources 184:691–694CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Land and ResourcesXi’anPeople’s Republic of China
  3. 3.Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive UtilizationHezhou UniversityHezhouPeople’s Republic of China

Personalised recommendations