Advertisement

Biochemical coupling strategy promotes saccharification of bamboo leaves biomass via xylanase and heteropolyacids

  • Zhuqian XiaoEmail author
  • Qiang Zhang
  • Xiaolei Wang
  • Qing Ge
  • Jianwei MaoEmail author
  • Qinqin Yang
  • Jianbing Ji
Original Article
  • 65 Downloads

Abstract

This study describes a promising strategy coupled heteropolyacids and enzyme to saccharification of raw bamboo leaves biomass. High yield of saccharides is scalable using this coupling technology. The phosphotungstic acid (PTA) and xylanase are adopted in this catalytic system and performed to produce xylose and polysaccharides with potential high activity. 317.7 mg/g of total monosaccharides and 170.0 mg/g polysaccharides (48.7% yield of total saccharides) are achieved by H3PW12O40 under 150 °C for 2.0 h successively coupled 200 μL xylanase digesting for 7.0 h. The coupling strategy of heteropolyacids and enzyme could promote respective advantages because Brønsted acid sites in PTA could regularly degrade the hemicellulose and cellulose to generate smaller molecules and successively expose more reactive sites to enzymes. DPPH and ABTS radicals scavenging activities and reducing power investigations further prove the polysaccharides exhibit strong antioxidant activity compared to the concentrated vitamin C. This method may aid in fast production of monosaccharides and bio-active polysaccharides for both of healthy medicine and food industry.

Keywords

Bamboo leaves Coupling catalysis Monosaccharides Polysaccharides Biomass 

Notes

References

  1. 1.
    Chate lG, Rogers RD (2014) Review: oxidation of lignin using ionic liquids-an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2:322–339.  https://doi.org/10.1021/sc4004086 CrossRefGoogle Scholar
  2. 2.
    Lange JP (2008) Lignocellulose liquefaction to biocrude: a tutorial review. ChemSusChem 11:997–1014.  https://doi.org/10.1002/cssc.201702362 CrossRefGoogle Scholar
  3. 3.
    García-Sancho C, Núñez IF, Moreno-Tost R, Santamaría-Gonzalez J (2017) Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Appl Catal B Environ 206:617–625.  https://doi.org/10.1016/j.apcatb.2017.01.065 CrossRefGoogle Scholar
  4. 4.
    Pilar B, Cristian V, Miguel B, Hermenegildo G, Jose AM (2018) Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water. Green Chem 20:4094–4101.  https://doi.org/10.1039/C8GC01933A CrossRefGoogle Scholar
  5. 5.
    Alper K, Tekin K, Karagöz S (2019) Hydrothermal and supercritical ethanol processing of woody biomass with a high-silica zeolite catalyst. Biomass Conv Bioref 19:376–387.  https://doi.org/10.1007/s13399-019-00376-7 CrossRefGoogle Scholar
  6. 6.
    Xiao ZQ, Fan Y, Cheng YJ, Zhang Q, Ge Q, Sha RY, Ji JB, Mao JW (2018) Metal particles supported on SiO2-OH nanosphere: new insight into interactions with metals for cellulose conversion to ethylene glycol. Fuel 215:406–416.  https://doi.org/10.1016/j.fuel.2017.11.086 CrossRefGoogle Scholar
  7. 7.
    Shu RY, Xu Y, Ma LL, Zhang Q, Wang C, Chen Y (2018) Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride. Chem Eng J 338:457–464.  https://doi.org/10.1016/j.cej.2018.01.002 CrossRefGoogle Scholar
  8. 8.
    Nguyen QA, Cho EJ, Lee DS, Bae HJ (2019) Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Bioresour Technol 272:209–216.  https://doi.org/10.1016/j.biortech.2018.10.018 CrossRefGoogle Scholar
  9. 9.
    Phongtha Si D'AS, Schoenlechner R, Homthawornchoo W, Rawdkuen S (2018) Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem 240:156–164.  https://doi.org/10.1016/j.foodchem.2017.07.080 CrossRefGoogle Scholar
  10. 10.
    Deng WP, Wang YZ, Zhang S, Gupta KM, Hülsey MJ, Asakura H, Liu LM, Han Y, Karp EM, Beckham GT, Dyson PJ, Jiang JW, Tanaka T, Wang Y, Yan N (2018) Catalytic amino acid production from biomass-derived intermediates. PNAS 115:5093–5098.  https://doi.org/10.1073/pnas.1800272115 CrossRefGoogle Scholar
  11. 11.
    Zelayaa VM, Fernández PV, Vegac AS, Mantesec AI, Federicoc AA, Ciancia M (2017) Glucuronoarabinoxylans as major cell walls polymers from young shoots of the woody bamboo Phyllostachys aurea. Carbohyd Polym 167:240–249.  https://doi.org/10.1016/j.carbpol.2017.03.015 CrossRefGoogle Scholar
  12. 12.
    Yu Y, Shen MY, Song QQ, Xie JH (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohyd Polym 183:91–101.  https://doi.org/10.1016/j.carbpol.2017.12.009 CrossRefGoogle Scholar
  13. 13.
    Huisjes EH, De Hulster E, Van Dam JC, Pronk JT, Van Maris AJA (2012) Galacturonic acid inhibits the growth of saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl Environ Microb 78:5052–5061.  https://doi.org/10.1128/AEM.07617-11 CrossRefGoogle Scholar
  14. 14.
    Luo Q, Peng H, Zhou MY, Lin D, Ruan R, Wan YQ (2012) Alkali extraction and physicochemical characterization of hemicelluloses from young bamboo (Phyllostachys pubescens mazel). BioResources 7:5817–5828. http://orcid.org/0000-0001-8835-2649Google Scholar
  15. 15.
    Peng H, Wang N, Hu ZR, Yu ZP, Liu YH, Zhang JS, Ruan R (2012) Physicochemical characterization of hemicelluloses from bamboo (Phyllostachys pubescens mazel) stem. Ind Crops Pro 37:41–50.  https://doi.org/10.1016/j.indcrop.2011.11.031 CrossRefGoogle Scholar
  16. 16.
    Katarzyna S, Esther MH, Jakub PP (2018) Preliminary characterization and bioactivities of some impatiens L. water-soluble polysaccharides. Molecules 23:631–643.  https://doi.org/10.3390/molecules23030631 CrossRefGoogle Scholar
  17. 17.
    Yu G, Li B, Liu C, Zhang YD, Wang HS, Mu XD (2013) Fractionation of the main components of corn Stover by formic acid and enzymatic saccharification of solid residue. Ind Crops Pro 50:750–757.  https://doi.org/10.1016/j.indcrop.2011.11.031 CrossRefGoogle Scholar
  18. 18.
    Peng H, Zhou MY, Yu ZP, Zhang JF, Ruan R, Wan YQ, Liu YH (2012) Fractionation and characterization of hemicelluloses from young bamboo (Phyllostachys pubescens mazel) leaves. Carbohyd Polym 95:262–271.  https://doi.org/10.1016/j.carbpol.2013.03.007 CrossRefGoogle Scholar
  19. 19.
    Kale MS, Yadav MP, Chau HK, Hotchkiss AT (2018) Molecular and functional properties of a xylanase hydrolysate of corn bran arabinoxylan. Carbohyd Polym 181:119–123.  https://doi.org/10.1016/j.carbpol.2017.10.008 CrossRefGoogle Scholar
  20. 20.
    Li Y, Liu P, Huang JF, Zhang R, Hu Z, Feng SQ, Wang YT, Wang LQ, Xia T, Peng LC (2018) Mild chemical pretreatments are sufficient for bioethanol production in transgenic glucosidase-overproducing rice straw. Green Chem 20:2047–2056.  https://doi.org/10.1039/C8GC00694F CrossRefGoogle Scholar
  21. 21.
    Zheng J, Choo K, Rehmann L (2016) Xylose removal from lignocellulosic biomass via a twin-screw extruder: the effects of screw configurations and operating conditions. Biomass Bioenergy 88:10–16.  https://doi.org/10.1016/j.biombioe.2016.03.012 CrossRefGoogle Scholar
  22. 22.
    Zhao XB, Li SM, Wu RC, Liu DH (2017) Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharifi cation: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11:567–559.  https://doi.org/10.1002/bbb.1768 CrossRefGoogle Scholar
  23. 23.
    Foo GS, Wei D, Sholl DS, Sievers C (2014) Role of Lewis and Brønsted acid sites in the dehydration of glycerol over niobia. ACS Catal 4:3180–3192.  https://doi.org/10.1021/cs5006376 CrossRefGoogle Scholar
  24. 24.
    Ma TL, Yun Z, Xu W, Chen LG, Li L, Ding JF, Shao R (2016) Pd-H3PW12O40/Zr-MCM-41: an efficient catalyst for the sustainable dehydration of glycerol to acrolein. Chem Eng J 294:343–352.  https://doi.org/10.1016/j.cej.2016.02.091 CrossRefGoogle Scholar
  25. 25.
    Rafiee E, Nobakht N, Behbood L (2017) Influence of pH, temperature, and alternating magnetic field on drug release from Keggin-type heteropoly acid encapsulated in iron-carboxylate nanoscale metal-organic framework. Res Chem Intermed 43:94–969.  https://doi.org/10.1007/s11164-016-2676-7 CrossRefGoogle Scholar
  26. 26.
    Songsiri N, Rempel GL, Prasassarakich P (2016) Liquid-phase synthesis of isoprene from methyl tert-butylether and formalin using Keggin-type heteropolyacids. Ind Eng Chem Res 55:8933–8940.  https://doi.org/10.1021/acs.iecr.6b02452 CrossRefGoogle Scholar
  27. 27.
    Yu X, Zhu W, Zhai S, Bao Q, Cheng D, Xia Y, Wang Z, Zhang W (2016) Prins condensation for the synthesis of isoprene from isobutylene and formaldehyde over sillica-supported H3SiW12O40 catalysts. React Kinet Mech Catal 117:761–771.  https://doi.org/10.1007/s11144-015-0946-9 CrossRefGoogle Scholar
  28. 28.
    Gorsd M, Sathicq G, Romanelli G, Pizzio L, Blanco M (2016) Tungstophosphoric acid supported on core-shell polystyrene-silica microspheres or hollow silica spheres catalyzed trisubstituted imidazole synthesis by multicomponent reaction. J Mol Catal A-Chem 420:294–302.  https://doi.org/10.1016/j.molcata.2016.04.010 CrossRefGoogle Scholar
  29. 29.
    Pizzio LR, Blanco MN (2003) Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. App Catal A-Gen 255:265–277.  https://doi.org/10.1016/s0926-860x(03)00565–9 CrossRefGoogle Scholar
  30. 30.
    Ma TL, Ding JW, Shao R, Xu W, Yun Z (2017) Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts. Chem Eng J 316:797–806.  https://doi.org/10.1016/j.cej.2017.02.018 CrossRefGoogle Scholar
  31. 31.
    Enferadi-Kerenkan A, Do TO, Kaliaguine S (2018) Heterogeneous catalysis by tungsten-based heteropoly compounds. Catal Sci Technol 8:2257–2284.  https://doi.org/10.1039/c8cy00281a CrossRefGoogle Scholar
  32. 32.
    Fu Y, Gu BJ, Wang JW, Gao J, Ganjyal GM, Wolcott MP (2018) Novel micronized woody biomass process for production of cost-effective clean fermentable sugars. Bioresour Technol 260:311–320.  https://doi.org/10.1016/J.BIORTECH.2018.03.096 CrossRefGoogle Scholar
  33. 33.
    Torre IDL, Ladero M, Santos VE (2019) Production of D-lactic acid by L. delbrueckii growing on orange peel waste hydrolysates and model monosaccharide solutions: effects of pH and temperature on process kinetics. Biomass Conv Bioref 19:396–403.  https://doi.org/10.1007/s13399-019-00396-3 CrossRefGoogle Scholar
  34. 34.
    Wobiwo FA, Chaturvedi T, Boda M, Fokou E, Emaga TH, Cybulska I, Deleu M, Gerin PA, Thomsen MH (2019) Bioethanol potential of raw and hydrothermally pretreated banana bulbs biomass in simultaneous saccharification and fermentation process with Saccharomyces cerevisiae. Biomass Conv Bioref 18:367–377.  https://doi.org/10.1007/s13399-018-00367-0 CrossRefGoogle Scholar
  35. 35.
    Zhang YJ, Zhao MY, Wang H, Hu HY, Liu R, Huang ZQ, Chen CJ, Chen D, Feng ZF (2019) Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: improved catalytic performance and efficient reusability. Bioresour Technol 288:121532–121539.  https://doi.org/10.1016/j.biortech.2019.121532 CrossRefGoogle Scholar
  36. 36.
    Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N (2011) Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. ChemSusChem 4:519–525.  https://doi.org/10.1002/cssc.201100025 CrossRefGoogle Scholar
  37. 37.
    Almohalla M, Rodríguez-Ramos I, Ribeiroc LS, Órfãoc JJM, Pereirac MFR, Guerrero-Ruiza A (2018) Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose. Catal Today 301:65–71.  https://doi.org/10.1016/j.cattod.2017.05.023 CrossRefGoogle Scholar
  38. 38.
    Caratzoulas S, Davis ME, Gorte RJ, Gounder R, Lobo RF, Nikolakis V, Sandler SI, Snyder MA, Tsapatsis M, Vlachos DG (2014) Challenges of and insights into acid-catalyzed transformations of sugars. J Phys Chem C 118:22815–22833. 0.1021/jp504358dGoogle Scholar
  39. 39.
    Javier R, Fabio S, Christopher JC, Avtar SM, James HC (2018) Production of fermentable species by microwave-assisted hydrothermal treatment of biomass Carbohydates: reactivity and fermentability assessments. Green Chem 20:4507–4520.  https://doi.org/10.1039/C8GC02182A CrossRefGoogle Scholar
  40. 40.
    Dietrich K, Hernandez-Mejia C, Verschuren P, Rothenberg G, Shiju NR (2017) One-pot selective conversion of hemicellulose to xylitol. Org Process Res Dev 21:165–170.  https://doi.org/10.1021/acs.oprd.6b00169 CrossRefGoogle Scholar
  41. 41.
    Shinde SD, Meng XZ, Kumar R, Ragauskas AJ (2018) Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Green Chem 20:209–216.  https://doi.org/10.1016/j.biortech.2018.10.018 CrossRefGoogle Scholar
  42. 42.
    Zhang JH, Zhuang JP, Lin L, Liu SJ, Zhang Z (2012) Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass Bioenergy 39:73–77.  https://doi.org/10.1016/j.biombioe.2010.07.028 CrossRefGoogle Scholar
  43. 43.
    Lopes M, Dussan K, Leahy JJ (2017) Enhancing the conversion of D-xylose into furfural at low temperatures using chloride salts as co-catalysts: catalytic combination of AlCl3 and formic acid. Chem Eng J 323:78–286.  https://doi.org/10.1016/j.cej.2017.04.114 CrossRefGoogle Scholar
  44. 44.
    Chaiklahan R, Chirasuwan N, Triratana P, Loha V, Tia S, Bunnag B (2013) Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. Int J Biol Macromol 58:73–78.  https://doi.org/10.1016/j.ijbiomac.2013.03.046 CrossRefGoogle Scholar
  45. 45.
    Getachew AT, Cho YJ, Chun BS (2018) Effect of pretreatments on isolation of bioactive polysaccharides from spent coffee grounds using subcritical water. Int J Biol Macromol 109:711–719.  https://doi.org/10.1016/j.ijbiomac.2017.12.120 CrossRefGoogle Scholar
  46. 46.
    Rico XN, Gullón B, Alonso JL, Parajó JC, Yáñez R (2018) Valorization of peanut shells: manufacture of bioactive oligosaccharides. Carbohyd Polym 183:21–28.  https://doi.org/10.1016/j.carbpol.2017.11.009 CrossRefGoogle Scholar
  47. 47.
    He NW, Tian LM, Zhai XC, Zhang XW, Zhao Y (2018) Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity. Int J Biol Macromol 115:114–123.  https://doi.org/10.1021/acs.jafc.8b00388 CrossRefGoogle Scholar
  48. 48.
    Qin Y, Xiong L, Li M, Liu J (2018) Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity. J Arg Food Chem 66:4373–4383.  https://doi.org/10.1021/acs.jafc.8b00388 CrossRefGoogle Scholar
  49. 49.
    Gong JY, Xia DZ, Huang J, Ge Q, Mao JW, Liu SW, Zhang Y (2015) Functional components of bamboo shavings and bamboo leaf extracts and their antioxidant activities in vitro. J Med Food 18:453–459.  https://doi.org/10.1089/jmf.2014.3189 CrossRefGoogle Scholar
  50. 50.
    Wang ZJ, Xie JH, Nie SP, Xie MY (2017) Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food Funct 8:915–926.  https://doi.org/10.1039/C6FO01315E CrossRefGoogle Scholar
  51. 51.
    Wang Z, Xie J, Yang Y, Zhang F, Wang S, Wu T, Shen MY, Xie MY (2017) Sulfated cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Sci Rep 7:40402–40423.  https://doi.org/10.1038/srep40402 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical ManufacturingZhejiang University of Science and TechnologyHangzhouPeople’s Republic of China
  2. 2.College of Chemical EngineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations