Utilization of oil palm fronds for bio-oil and bio-char production using hydrothermal liquefaction technology

  • Ankit Jadhav
  • Israr Ahmed
  • A. G Baloch
  • Harshit Jadhav
  • Sabzoi Nizamuddin
  • M. T. H. Siddiqui
  • Humair Ahmed Baloch
  • Sundus Saeed Qureshi
  • Nabisab Mujawar MubarakEmail author
Original Article


Hydrothermal liquefaction technology carried out on local Malaysian oil palm fronds (OPF) in a batch autoclave reactor to produce solid bio-char as well as liquid bio-oil is reported in this study. The parameters taken in consideration for study encapsulated variable reaction temperature (160–260 °C) and reaction times (20–100 min). Observations showed that the bio-oil yield percentage increased from 27.3% at 160 °C to 41.9% at 260 °C, whereas bio-char yield percentage decreased from 65.2% at 160 °C to 43.2% at 260 °C. Similarly, higher reaction time also produces higher yield bio-oil percentage and lower bio-char yield percentage. The characterization results showed that the combustion properties of bio-char and bio-oil were improved after hydrothermal liquefaction due to decrease in percentage of oxygen of bio-oil and bio-char and an increase in percentage of carbon content. The carbon percentage increased from 42.73% for OPF to 59.42% and 60.47% for bio-char and bio-oil, respectively. Whereas, the percentage of oxygen decreased from 52.51 for OPF to 36.30% and 35.61 for bio-char and bio-oil. The main chemical compounds identified in bio-oil by GC-MS were phenolic compounds and their derivatives, alcohols, ketones, and esters.


Hydrothermal liquefaction Bio-oil Bio-char Malaysia’s biomass 



  1. 1.
    Abnisa F, Daud WW, Sahu J (2011) Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenergy 35(8):3604–3616CrossRefGoogle Scholar
  2. 2.
    Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33(24):2205–2213CrossRefGoogle Scholar
  3. 3.
    Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16(7):5101–5109CrossRefGoogle Scholar
  4. 4.
    Akhtar J, Kuang SK, Amin NS (2010) Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renew Energy 35(6):1220–1227CrossRefGoogle Scholar
  5. 5.
    Arami-Niya A, Abnisa F, Sahfeeyan MS, Daud WW, Sahu JN (2011) Optimization of synthesis and characterization of palm shell-based bio-char as a by-product of bio-oil production process. BioResources 7(1):0246–0264Google Scholar
  6. 6.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875CrossRefGoogle Scholar
  7. 7.
    Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167(1):14–30CrossRefGoogle Scholar
  8. 8.
    Chew TL, Bhatia S (2008) Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour Technol 99(17):7911–7922CrossRefGoogle Scholar
  9. 9.
    Cunha JA, Pereira MM, Valente LM, De la Piscina PR, Homs N, Santos MRL (2011) Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass Bioenergy 35(5):2106–2116CrossRefGoogle Scholar
  10. 10.
    Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383CrossRefGoogle Scholar
  11. 11.
    Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841CrossRefGoogle Scholar
  12. 12.
    Hasegawa I, Tabata K, Okuma O, Mae K (2004) New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy Fuel 18(3):755–760CrossRefGoogle Scholar
  13. 13.
    Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24(6):725–735CrossRefGoogle Scholar
  14. 14.
    Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy 34(21):8799–8817CrossRefGoogle Scholar
  15. 15.
    Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031CrossRefGoogle Scholar
  16. 16.
    Lapuerta M n, Hernandez JJ, Rodrı́guez J n (2004) Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy 27(4):385–391CrossRefGoogle Scholar
  17. 17.
    Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949CrossRefGoogle Scholar
  18. 18.
    Marx S, Chiyanzu I, Piyo N (2014) Influence of reaction atmosphere and solvent on biochar yield and characteristics. Bioresour Technol 164:177–183CrossRefGoogle Scholar
  19. 19.
    Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010a) Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of catalysts. Bioresour Technol 101(2):745–751CrossRefGoogle Scholar
  20. 20.
    Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010b) Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology. Bioresour Technol 101(23):9335–9341CrossRefGoogle Scholar
  21. 21.
    Minowa T, Kondo T, Sudirjo ST (1998) Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenergy 14(5):517–524CrossRefGoogle Scholar
  22. 22.
    Mohammed M, Salmiaton A, Wan Azlina W, Mohamad Amran M (2012) Gasification of oil palm empty fruit bunches: a characterization and kinetic study. Bioresour Technol 110:628–636CrossRefGoogle Scholar
  23. 23.
    Nizamuddin S, Jayakumar N, Sahu J, Ganesan P, Bhutto A, Mubarak N (2015) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng:1–9Google Scholar
  24. 24.
    Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97CrossRefGoogle Scholar
  25. 25.
    Ofori-Boateng C, Lee KT, Saad B (2014) A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization. Energy Convers Manag 81:192–200CrossRefGoogle Scholar
  26. 26.
    Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol 161:255–262CrossRefGoogle Scholar
  27. 27.
    Park J, Won SW, Mao J, Kwak IS, Yun Y-S (2010) Recovery of Pd (II) from hydrochloric solution using polyallylamine hydrochloride-modified< i> Escherichia coli</i> biomass. J Hazard Mater 181(1):794–800CrossRefGoogle Scholar
  28. 28.
    Parshetti GK, Chowdhury S, Balasubramanian R (2014) Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour Technol 161:310–319CrossRefGoogle Scholar
  29. 29.
    Peng J, Chen P, Lou H, Zheng X (2009) Catalytic upgrading of bio-oil by HZSM-5 in sub-and super-critical ethanol. Bioresour Technol 100(13):3415–3418CrossRefGoogle Scholar
  30. 30.
    Sabzoi NY, Jayakumar EK, Sahu NS, Ganesan JN, Mubarak P, Mazari NM, Shaukat A (2015) An optimisation study for catalytic hyfrolysis of oil palm shell using response surface methodology. J Oil Palm Res 47(4):339–351Google Scholar
  31. 31.
    Shuit SH, Tan KT, Lee KT, Kamaruddin A (2009) Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy 34(9):1225–1235CrossRefGoogle Scholar
  32. 32.
    Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35(12):5406–5411CrossRefGoogle Scholar
  33. 33.
    Sun P, Heng M, Sun S, Chen J (2010) Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35(12):5421–5429CrossRefGoogle Scholar
  34. 34.
    Tan JP, Luthfi AAI, Manaf SFA, Wu TY, Jahim JM (2018) Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. J CO2 Utiliz 26:595–601CrossRefGoogle Scholar
  35. 35.
    Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sust Energ Rev 40:673–687CrossRefGoogle Scholar
  36. 36.
    Tye YY, Lee KT, Abdullah WNW, Leh CP (2011) Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: status, potential and future prospects. Renew Sust Energ Rev 15(9):4521–4536CrossRefGoogle Scholar
  37. 37.
    Zhang T, Walawender WP, Fan L, Fan M, Daugaard D, Brown R (2004) Preparation of activated carbon from forest and agricultural residues through CO< sub> 2</sub> activation. Chem Eng J 105(1):53–59CrossRefGoogle Scholar
  38. 38.
    Zhu G, Zhu X, Fan Q, Wan X (2011) Recovery of biomass wastes by hydrolysis in sub-critical water. Resour Conserv Recycl 55(4):409–416CrossRefGoogle Scholar
  39. 39.
    Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W (2009) Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnol Adv 27(5):578–582CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ankit Jadhav
    • 1
  • Israr Ahmed
    • 2
  • A. G Baloch
    • 3
  • Harshit Jadhav
    • 4
  • Sabzoi Nizamuddin
    • 5
  • M. T. H. Siddiqui
    • 5
  • Humair Ahmed Baloch
    • 5
  • Sundus Saeed Qureshi
    • 6
  • Nabisab Mujawar Mubarak
    • 7
    Email author
  1. 1.Department of Mechanical EngineeringAhmedabad Institute of TechnologyAhmedabadIndia
  2. 2.School of Chemical EngineeringThe University of FaisalabadFaisalabadPakistan
  3. 3.Department of Mechanical EngineeringQuaid-e-Awam University of Engineering, Science and TechnologyNawabshahPakistan
  4. 4.Vishwakarma Government Engineering CollegeAhmedabadIndia
  5. 5.School of EngineeringRMIT UniversityMelbourneAustralia
  6. 6.Institute of Environmental Engineering & ManagementMehran University of Engineering & TechnologyJamshoroPakistan
  7. 7.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin UniversitySarawakMalaysia

Personalised recommendations