Advertisement

Enzymatic demethylation of Kraft lignin for lignin-based phenol-formaldehyde resin applications

  • Balaji VenkatesagowdaEmail author
  • Robert F. H. Dekker
Original Article
  • 21 Downloads

Abstract

Wood-rot fungi from the Boreal Forest of Canada were studied for their ability to demethylate Kraft lignin (KL). Demethylation by the action of enzymes (O-demethylases) removed the O-methyl/methoxyl groups of lignin liberating methanol, and produced a demethylated KL enriched in vicinal-hydroxyl groups with potential to serve as lignin-based phenol-formaldehyde polymers. Screening experiments identified the liberation of methanol (measured by selected-ion flow-tube mass spectrometry), lignin-demethylating enzymes, alcohol oxidase, and other ligninolytic enzymes. Highest amounts of headspace methanol (parts-per-billion) were detected in the genus Aspergillus, Ctenomyces, Cunninghamella, Penicillium, and Sporobolomyces. Methanol generated from lignin demethylation induced alcohol oxidase activity, but which was higher in Aspergillus, Ctenomyces, Entoloma, and non-sporulating fungi. Among the fungi tested, three brown-rot, i.e., Fomitopsis pinicola and Galerina autumnalis and a mitosporic Aspergillus sp.3 BRI 270, were cultured solely on KL, and lignin model compounds (LMCs) to determine lignin demethylation. Various carbohydrate supplements added to nutrient media containing KL significantly influenced demethylating activity. Aspergillus sp.3 BRI 270 showed the highest degree of lignin demethylation (30.1%) which no evidence presented for this comment occurred when cultivated on KL media supplemented with birchwood xylan as analyzed by 1H NMR following O-acetylation of modified KLs. All fungi demonstrated considerable demethylating activity by utilizing softwood KL, but OrganoSolv lignins (poplar, willow, wheat straw, and mixed agricultural wastes), because of their harsh chemical treatments of extraction, affected the microbial and enzymatic demethylation. Extracellular demethylating enzymes from Aspergillus sp.3 BRI 270 generated high vicinal-diol content (measured by the pyrocatechol titanium(III)-nitrilotriacetate method) in LMCs: 4-hydroxy-3-methoxy cinnamaldehyde (326.00 μmol/mL), syringaldehyde (102.67 μmol/mL), and Kraft lignin (397.46 μmol/mL) as analyzed by 1H NMR analysis.

Keywords

Lignin demethylation O-Demethylase Methanol Pyrocatechol O-Acetylated lignin Pyrocatechol-titanium(III) nitrilotriacetate complex 

Notes

Funding information

This study received financial support from the NSERC-CRD, by way of a grant from the government of Canada (CRDPJ 380797 – 09 Dekker).

References

  1. 1.
    Bashtan-Kandybovich I, Venkatesagowda B, Barbosa AM, Malek L, Dekker RFH (2012) Modification of Kraft lignin by biological demethylation. J-FOR 2(4):16–27Google Scholar
  2. 2.
    Abdelaziz OY, Brink DP, Prothmannc P, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34:1318–1346Google Scholar
  3. 3.
    Kohler AC, Mills MJL, Adams PD, Simmons BA, Sale KL (2017) Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. PNAS 18(114):E3205–E3214.  https://doi.org/10.1073/pnas.1619263114 Google Scholar
  4. 4.
    Venkatesagowda B (2018) Enzymatic Kraft lignin demethylation and fungal O demethylases like vanillate-O-demethylase and syringate O-demethylase catalyzed catechol-Fe3+ complexation method. J Microbiol Methods 152:126–134.  https://doi.org/10.1016/j.mimet.2018.07.021 Google Scholar
  5. 5.
    Ander P, Stoytschev I, Eriksson KE (1988) Cleavage and metabolism of methoxyl groups from vanillic and ferulic acids by brown-rot and soft-rot fungi. Cellulose ChemTechnol 22:255–266Google Scholar
  6. 6.
    Jin I, Schulz TP, Nicholas DD (1990) Structural characterization of brown-rotted lignin. Holzforschung 44:133–138Google Scholar
  7. 7.
    Filley TR, Hatcher PG, Shortle W (2000) The application of 13C-labeled tetramethylammonium hydroxide (13CTMAH) thermochemolysis to the study of the fungal degradation of wood. Org Geochem 31:181–198Google Scholar
  8. 8.
    Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124Google Scholar
  9. 9.
    Gibson A, Dekker RFH, Malek L (2014) Adaptation of Ti (III)-NTA colorimetric assay for use in detecting microbial demethylation of lignin and lignin derived compounds in aerobic conditions. J Microbiol Methods 101:28–32Google Scholar
  10. 10.
    Zou L, Ross BM, Hutchison LJH, Christopher LP, Dekker RFH, Malek L (2015) Fungal demethylation of Kraft lignin. Enzyme Microb Technol 73–74:44–50Google Scholar
  11. 11.
    Ferhan M, Yan N, Sain M (2013) A new method for demethylation of lignin from woody biomass using biophysical methods. J Chem Eng Process Technol 4:5.  https://doi.org/10.4172/2157-7048.1000160 Google Scholar
  12. 12.
    Sawamura K, Tobimatsu Y, Kamitakahara H, Takano T (2017) Lignin functionalization through chemical demethylation: preparation and tannin-like properties of demethylated guaiacyl-type synthetic Lignins. ACS Sustain Chem Eng 5(6):5424–5431Google Scholar
  13. 13.
    Ma C, Mei X, Fan Y, Zhang Z (2018) Oxidative depolymerization of Kraft lignin and its application in the synthesis of lignin-phenol-formaldehyde resin. BioResources 13(1):1223–1234Google Scholar
  14. 14.
    Bray MW, Andrews TM (1924) Chemical changes of wood during decay. Ind Eng Chem 16(2):37–139Google Scholar
  15. 15.
    Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194.  https://doi.org/10.1016/j.biotechadv.2008.11.001 Google Scholar
  16. 16.
    Eriksson KEL, Blanchette RA, Ander P (1990) Biodegradation of lignin: in microbial and enzymatic degradation of wood and wood components. Springer- Verlag KG, Berlin, pp 225–333Google Scholar
  17. 17.
    Watanabe T (2007) Trends in biorefinery and pretreatments of lignocellulosics by white rot fungi. Mokuzai Gakkaishi 53:1–13Google Scholar
  18. 18.
    Frick TD, Crawford RL (1983) Mechanisms of microbial demethylation of lignin model polymers. In: Higuchi T, Chang H-M, Kirk TK (eds) Recent advances in lignin biodegradation research. Uni Publ, Tokyo, pp 143–152Google Scholar
  19. 19.
    Jeffries TW (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1:163–176Google Scholar
  20. 20.
    Have TR, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413Google Scholar
  21. 21.
    Manavalan T, Manavalan A, Thangavelu KP, Heese K (2012) Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. J Proteome 21(77):298–309.  https://doi.org/10.1016/j.jprot.2012.09.004 Google Scholar
  22. 22.
    Voelker BM, Sulzberger BS (1996) Effects of fulvic acid on Fe (II) oxidation by hydrogen peroxide. Environ Sci Technol 30:1106–1114Google Scholar
  23. 23.
    Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Biol 65:674–679Google Scholar
  24. 24.
    Westereng B, Cannella D, Agger JW, Jorgensen H, Andersen ML, Eijsink VGH, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561.  https://doi.org/10.1038/srep18561 Google Scholar
  25. 25.
    Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken JP, van Berkel WJ, Kabel MA, Gruppen H (2016) Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels 9:186Google Scholar
  26. 26.
    Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Microbial Genetics Bulletin 13:42–43Google Scholar
  27. 27.
    Tien M, Kirk KT (1984) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249Google Scholar
  28. 28.
    Kuwahara M, Glenn JK, Morgan MN, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250Google Scholar
  29. 29.
    Venkatesagowda B, Dekker RFH (2019) A rapid method to detect and estimate the activity of the enzyme, alcohol oxidase by the use of two chemical complexes - acetylacetone (3,5-diacetyl-1,4-dihydrolutidine complex) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4-dihydrolutidine complex) methods. J Microbiol Methods 158:71–79Google Scholar
  30. 30.
    Dekker RFH (1980) Induction and characterization of a cellobiose dehydrogenase produced by a species of Monilia. J Gen Microbiol 120:309–316Google Scholar
  31. 31.
    Knop D, Levinson D, Makovitzki A, Agami A, Lerer E, Mimran A, Yarden O, Hadar Y (2016) Limits of versatility of versatile peroxidase. Appl Environ Microbiol 82:4070–4080Google Scholar
  32. 32.
    Ferreira P, Medina M, Guillén F, Martínez MJ, Van Berkel WJ, Martínez AT (2005) Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J 389:731–738Google Scholar
  33. 33.
    Abreu HDS, Freire MDFI (1995) Methoxyl content determination of lignins by 1H NMR. Ann Acad Bras Cienc 67:379–382Google Scholar
  34. 34.
    Song Y, Wang Z, Yan N, Zhang R, Li J (2016) Demethylation of wheat straw alkali lignin for application in phenol formaldehyde adhesives. Polymers 8(209):1–14Google Scholar
  35. 35.
    Xavier AMRB, Tavares APM, Ferreira R, Amado F (2007) Trametes versicolor growth and laccase induction with by-products of pulp and paper industry. Electron J Biotechnol 10(3):1–8Google Scholar
  36. 36.
    Asina F, Brzonova I, Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y (2016) Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 220:414–424Google Scholar
  37. 37.
    Hong Y, Dashtban M, Chen S, Song R, Qin W (2015) Lignin in paper mill sludge is degraded by white-rot Fungi in submerged fermentation. J Microb Biochem Technol 7:4Google Scholar
  38. 38.
    Nutsubidze NN, Sarkanen S, Schmidt EL, Shashikanth S (1998) Consecutive polymerization and depolymerization of Kraft lignin by Trametes cingulata. Phytochem 49:1203–1212Google Scholar
  39. 39.
    Bourbonnais R, Paice MG (1992) Demethylation and delignification of Kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 36:823–827Google Scholar
  40. 40.
    Bourbonnais R, Paice MG (1996) Enzymatic delignification of Kraft pulp using laccase and a mediator. TAPPI J 79(6):199–204Google Scholar
  41. 41.
    Paice MG, Bourbonnais R, Reid ID (1995) Bleaching Kraft pulps with oxidative enzymes and alkaline hydrogen peroxide. TAPPI J 78(9):161–169Google Scholar
  42. 42.
    Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Oxidation of phenolic arylglycerol .beta.-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an .alpha.-carbonyl model compound. Biochemistry 31(21):4986–4995Google Scholar
  43. 43.
    Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin—recent routes reviewed. Eur Polym J 49:1151–1173Google Scholar
  44. 44.
    Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Lignin, humic substances and coal, vol 1. Wiley-VCH, Weinheim, pp 129–180Google Scholar
  45. 45.
    Perez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martı’nez MJ, Piontek K, Martinez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402Google Scholar
  46. 46.
    Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209Google Scholar
  47. 47.
    Ruiz-Duenas FJ, Camarerero S, Perez-Boada M, Martinez AT (2001) A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29(pt2):116–122Google Scholar
  48. 48.
    Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50Google Scholar
  49. 49.
    Kojima Y, Várnai A, Ishida T, Sunagawa N, Dejan M, Petrovic DM, Igarashi K, Jellison J, Goodell B, Alfredsen G, Westereng B, Eijsink VGH, Yoshida M (2016) A lytic polysaccharide mono-oxygenase with broad xyloglucan specificity from the brown-rot fungus gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl Environ Microbiol 82(22):6557–6572Google Scholar
  50. 50.
    Renganathan V, Usha SN, Lindenburg F (1990) Cellobiose oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium - interaction with microcrystal-line cellulose. Appl Microbiol Biotechnol 32:609–613Google Scholar
  51. 51.
    Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113Google Scholar
  52. 52.
    Baminger U, Subramaniam SS, Renganathan V, Haltrich D (2001) Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl Environ Microbiol 67:1766–1774Google Scholar
  53. 53.
    Daniel G, Volc J, Filonova L, Plihal O, Kubátová E, Halada P (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73:6241–6253Google Scholar
  54. 54.
    Martinez AT, Rencoret J, Nieto L, Jimenez-Barbero J, Gutiérrez A, Del Rio JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidence by in situ structural analyses. Environ Microbiol 13:96–107Google Scholar
  55. 55.
    Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8:2214–2223Google Scholar
  56. 56.
    Ander P, Hatakka AI, Lundell TK, Pettersson B, Stalmasek M, Volc J (1992) Demethoxylation of lignin by lignin peroxidases from Phlebia radiata and Phanerochaete chrysosporium. In: Kennedy JF, Phillips GO, Williams PA (eds) Ligno-Cellulosics. Science, Technology, Development and Use. Ellis Horwood, New York, pp 109–119Google Scholar
  57. 57.
    Wymelenberg AV, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, Kersten PJ, Cullen D (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610Google Scholar
  58. 58.
    Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009a) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357Google Scholar
  59. 59.
    Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009b) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959Google Scholar
  60. 60.
    Kirk TK (1975) Effects of brown-rot fungus Lenzites trabea on lignin of spruce wood. Holzforschung 29:99–107Google Scholar
  61. 61.
    Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [O14CH3]-labelled lignin model com- pounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565Google Scholar
  62. 62.
    Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, Vincken JP, Weijers D, Berkel WJHV, Gruppen H, Kabel MA (2017) Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnol Biofuels 10:121Google Scholar
  63. 63.
    Hatakka A (1985) Degradation of veratric acid and other lignin- related aromatic compounds by the white-rot fungus Pycnoporus cinnabarinus. Arch Microbiol 141:22–28Google Scholar
  64. 64.
    Trojanowski J, Leonowicz A, Hampel B (1966) Exoenzymes in fungi degrading lignin II. Demethoxylation of lignin and vanillic acid. Acta Microbiol Pol 15:17–22Google Scholar
  65. 65.
    Ishihara T, Miyazaki M (1974) Demethylation of lignin and lignin models by fungal laccase. Mokuzai Gakkaishi 20:39–41Google Scholar
  66. 66.
    Cartwright NJ, Smith AR (1967) Bacterial attack on phenolic ethers: an enzyme system demethylating vanillic acid. Biochem J 102(3):826–841Google Scholar
  67. 67.
    Ribbons DW (1970) Stoichiometry of O-demethylase activity in Pseudomonas aeruginosa. FEBS Lett 8:101–104Google Scholar
  68. 68.
    Gupta RC, Sehgal VK (1979) Effect of viscosity and molecular-weight of lignin-phenol-formaldehyde-resin on the glue adhesion strength of plywood. Holzforsch Holzverwert 31:7–9Google Scholar
  69. 69.
    Khan MA, Ashraf SM, Malhotra VP (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24(6):485–493Google Scholar
  70. 70.
    Vázquez G, González J, Freire S, Antorrena G (1997) Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresour Technol 60(3):191–198Google Scholar
  71. 71.
    Li M, Yoo CG, Pu Y, Ragauskas AJ (2018) 31P NMR chemical shifts of solvents and products impurities in biomass pretreatments. ACS Sustain Chem Eng 6:1265–1270Google Scholar
  72. 72.
    Hämäläinen V, Grönroos T, Suonpää A, Heikkilä MW, Romein B, Ihalainen P, Malandra S, Klara R, Birikh KR (2018) Enzymatic processes to unlock the lignin value. Front Bioeng Biotechnol 6:20Google Scholar
  73. 73.
    Mallinson SJB, Machovina MM, Silveira RL, Garcia-Borràs M, Gallup N, Johnson CW, Allen MD, Skaf MS, Crowley MF, Neidle EL, Houk KN, Beckham GT, DuBois JL, McGeehan JE (2018) A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat Commun 9:2487Google Scholar
  74. 74.
    Yoshikata T, Suzuki K, Kamimura N, Namiki M, Hishiyama S, Araki T, Kasai D, Otsuka Y, Nakamura M, Fukuda M, Katayama Y, Masai E (2014) Three-component O-demethylase system essential for catabolism of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6. Appl Environ Microbiol 80(23):7142–7153.  https://doi.org/10.1128/AEM.02236-14 Google Scholar
  75. 75.
    Abe T, Masai E, Miyauchi K, Katayama Y, Fukuda M (2005) A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J Bacteriol 187:2030–2037Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biorefining Research InstituteLakehead UniversityThunder BayCanada
  2. 2.Programa de Pós-Graduação em Engenharia Ambiental, Câmpus LondrinaUniversidade Tecnológica Federal do ParanáLondrinaBrazil

Personalised recommendations