Advertisement

Photoacoustic spectroscopy for detection of N2O emitted from combustion of diesel/beef tallow biodiesel/sugarcane diesel and diesel/beef tallow biodiesel blends

  • F. G. Linhares
  • M. A. Lima
  • G. A. Mothe
  • M. P. P. de Castro
  • M. G. da Silva
  • M. S. SthelEmail author
Original Article
  • 28 Downloads

Abstract

Nitrous oxide (N2O) is an important greenhouse gas. Emissions of this gas are generated by the combustion of fossil fuels, mainly in the transportation sector worldwide. Biofuel is a promising alternative instead of diesel considering that it allows a reduction on the emissions of polluting gases. In Brazil, there is a large program on the use of biofuels, which according to the Intergovernmental Panel on Climate Change (IPCC) reduces greenhouse gas emissions. This work shows the N2O emissions resulting from combustions of diesel/beef tallow biodiesel blends of B7, B15, B20, B25, B35, and B50. In parallel, another experiment was done with fuel sample adopted by a bus fleet from São Paulo using blends comprising 10% of sugarcane diesel in diesel (CD10) and blends with beef tallow biodiesel of CD10: CD-B15, CD-B20, CD-B25, CD-B35, and CD-B50. The photoacoustic spectroscopy technique coupled to a quantum cascade laser (QCL) was used to detect N2O. Concentrations of the emissions were detected in the range of 5.3 to 7.4 ppmv for diesel/beef tallow biodiesel blends combustion and in the range of 4.3 to 11.0 ppmv for diesel/sugar cane diesel/beef tallow biodiesel blends combustion. The technique used was very sensitive and selective to identify and determine the emission concentrations of N2O.

Keywords

Photoacoustic spectroscopy Sugarcane diesel Biodiesel Nitrous oxide 

Notes

Acknowledgements

We also thank the Distribution Base of Petrobras of Barueri-SP for supplying the CD10/blends diesel farnesano and the Company Minerva S. A for supplying the bovine tallow biodiesel by the granted samples.

Funding information

This study was financially supported by the Brazilian agencies of the Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), National Council for Scientific and Technological Development (CNPq), and Coordination of Improvement of Higher Education Personal (CAPES).

References

  1. 1.
    Colvile RN, Hutchinson EJ, Mindell JS, Warren RF (2001) The transport sector as a source of air pollution. Atmos Environ 35:1537–1565.  https://doi.org/10.1016/S1352-2310(00)00551-3 CrossRefGoogle Scholar
  2. 2.
    Costabile F, Allegrini I (2008) A new approach to link transport emissions and air quality: an intelligent transport system based on the control of traffic air pollution. Environ Model Softw 23:258–267.  https://doi.org/10.1016/j.envsoft.2007.03.001 CrossRefGoogle Scholar
  3. 3.
    Righi M, Hendricks J, Sausen R (2015) The global impact of the transport sectors on atmospheric aerosol in 2030-part 1: land transport and shipping. Atmos Chem Phys 15:633–651.  https://doi.org/10.5194/acp-15-633-2015 CrossRefGoogle Scholar
  4. 4.
    International Energy Agency (2016) Energy and Air Pollution, World Energy Outlook - Spec Rep 266.  https://doi.org/10.1021/ac00256a010
  5. 5.
    European Environment Agency (EEA) (2015) The European Environment: State and Outlook 2015: Synthesis. Eur Environ 42.  https://doi.org/10.2800/45773
  6. 6.
    United States Environmental Protection Agency (2016) Global Greenhouse Gas Emissions Data, United States Environ Prot Agency. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. Accessed 15 June 2018
  7. 7.
    European Commission (2016) EU Reference Scenario 2016: energy, transport and GHG emissions trends to 2050.  https://doi.org/10.2833/9127.
  8. 8.
    Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231.  https://doi.org/10.2174/1874282300802010217 CrossRefGoogle Scholar
  9. 9.
    Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 5:725–730.  https://doi.org/10.1038/nclimate2657 CrossRefGoogle Scholar
  10. 10.
    Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357.  https://doi.org/10.1038/nature06937 CrossRefGoogle Scholar
  11. 11.
    Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, Berman-Frank I (2015) Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Chang 5:1002–1006.  https://doi.org/10.1038/nclimate2722 CrossRefGoogle Scholar
  12. 12.
    Bisaro A, Hinkel J (2016) Governance of social dilemmas in climate change adaptation. Nat Clim Chang 6:354–359.  https://doi.org/10.1038/nclimate2936 CrossRefGoogle Scholar
  13. 13.
    Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, P P-K, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–225.  https://doi.org/10.1038/nclimate2448. CrossRefGoogle Scholar
  14. 14.
    Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87.  https://doi.org/10.1038/nature16467 CrossRefGoogle Scholar
  15. 15.
    Becker KH, Lörzer JC, Kurtenbach R, Wiesen P, Jensen TE, Wallington TJ (1999) Nitrous oxide (N2O) emissions from vehicles. Environ Sci Technol 33:4134–4139.  https://doi.org/10.1021/es9903330 CrossRefGoogle Scholar
  16. 16.
    Borsari V, Assunca̧ o J (2012) Nitrous oxide emissions from gasohol, ethanol and CNG light duty vehicles. Clim Chang 111(3–4):519–531CrossRefGoogle Scholar
  17. 17.
    Suarez-Bertoa R, Mendoza-Villafuerte P, Bonnel P, Lilova V, Hill L, Perujo A, Astorga C (2016) On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle. Atmos Environ 139:167–175.  https://doi.org/10.1016/j.atmosenv.2016.04.035 CrossRefGoogle Scholar
  18. 18.
    US EPA, US Environmental Protection Agency, US Environ. Prot Agency (2016).Google Scholar
  19. 19.
    Environmental Protection Agency (2015) Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 through 2015. Fuel Econ Trends Rep:1–155Google Scholar
  20. 20.
    Lipman TE, Delucchi MA (2002) Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Clim Chang 53:477–516.  https://doi.org/10.1023/A:1015235211266. CrossRefGoogle Scholar
  21. 21.
    Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ (2012) Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environ Res Lett 7:14030.  https://doi.org/10.1088/1748-9326/7/1/014030 CrossRefGoogle Scholar
  22. 22.
    Hartmann DL, Tank AMGK, Rusticucci M (2013) IPCC fifth assessment report, climatie change 2013: the physical science basis, Ipcc. AR5, 31–39.  https://doi.org/10.1017/CBO9781107415324
  23. 23.
    BE Nacional (2015) Balanço Energético Nacional 2015:Ano Base 2014, Empresa Pesquisa Energética - EPE 291Google Scholar
  24. 24.
    UNFCCC (2015) Conference of the Parties (COP), Paris Climate Change Conference-November 2015, COP 21Google Scholar
  25. 25.
    Tollefson BYJ, Weiss KR (2015) Nations adopt historic global climate accord. Nature 528:315–316.  https://doi.org/10.1038/528315a. CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Ministry of Mines and Energy (MME). http://www.mme.gov.br/. Acessed 22 June 2018
  28. 28.
    Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6.  https://doi.org/10.1186/1754-6834-1-6 CrossRefGoogle Scholar
  29. 29.
    Goldemberg J (2009) Biomassa e energia. Quim Nova 32:582–587.  https://doi.org/10.1590/S0100-40422009000300004 CrossRefGoogle Scholar
  30. 30.
    Perez VH, Silveira Junior EG, Cubides DC, David GF, Justo OR, Castro MPP, Sthel MS, De Castro HF (2014) Trends in biodiesel production: present status and future directions.  https://doi.org/10.1007/978-3-319-05020-1_13
  31. 31.
    ANP (2018) ‘Natural Gas and Biofuels Agency’, Retrieved. Available at: http://www.anp.gov.br/. Acessed 5 Jul 2018
  32. 32.
    de Oliveira M (2008) Diesel de Cana. Pesqui Fapesp 153:88–91. http://revistapesquisa.fapesp.br/wp-content/uploads/2008/11/90_911.pdf. Accessed 20 July 2018
  33. 33.
    Millo F, Bensaid S, Fino D, Marcano SJC, Vlachos T, Debnath BK (2014) Influence on the performance and emissions of an automotive Euro 5 diesel engine fueled with F30 from Farnesane. Fuel:134–142.  https://doi.org/10.1016/j.fuel.2014.07.060
  34. 34.
    Rocha AM, Sthel MS, De Castro MPP, Mothé GA, Silva WC, Perez VH, Da Silva MG, Miklós A, Vargas H (2014) Evaluation of nitrous oxide emitted from diesel/biodiesel blends during combustion in a diesel engine at laboratory scale by a photoacoustic spectroscopy technique. Energy Fuel 28:4028–4032.  https://doi.org/10.1021/ef500294a CrossRefGoogle Scholar
  35. 35.
    Couto FM, Sthel MS, Castro MPP, da Silva MG, Rocha MV, Tavares JR, Veiga CFM, Vargas H (2014) Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production. Appl Phys B Lasers Opt 117:897–903.  https://doi.org/10.1007/s00340-014-5906-y. CrossRefGoogle Scholar
  36. 36.
    Stefański P, Lewicki R, Sanchez NP, Tarka J, Griffin RJ, Razeghi M, Tittel FK (2014) Measurements of carbon monoxide mixing ratios in Houston using a compact high-power CW DFB-QCL-based QEPAS sensor. Appl Phys B Lasers Opt 117:519–526.  https://doi.org/10.1007/s00340-014-5863-5. CrossRefGoogle Scholar
  37. 37.
    Kalchmair S, Blanchard R, Mansuripur TS, de Naurois G-M, Pfluegl C, Witinski MF, Diehl L, Capasso F, Loncar M (2015) High tuning stability of sampled grating quantum cascade lasers. Opt Express 23:15734.  https://doi.org/10.1364/OE.23.015734 CrossRefGoogle Scholar
  38. 38.
    Lima JP, Vargas H, Miklós A, Angelmahr M, Hess P (2006) Photoacoustic detection of NO2 and N2O using quantum cascade lasers. Appl Phys B Lasers Opt 85:279–284.  https://doi.org/10.1007/s00340-006-2357-0. CrossRefGoogle Scholar
  39. 39.
    Li JS, Yu B, Fischer H, Chen W, Yalin AP (2015) Contributed review: quantum cascade laser based photoacoustic detection of explosives. Rev Sci Instrum 86:031501.  https://doi.org/10.1063/1.4916105 CrossRefGoogle Scholar
  40. 40.
    Miklós A, Hess P, Bozóki Z (2001) Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev Sci Instrum 72:1937–1955.  https://doi.org/10.1063/1.1353198 CrossRefGoogle Scholar
  41. 41.
    Reed ZD, Sperling B, van Zee RD, Whetstone JR, Gillis KA, Hodges JT (2014) Photoacoustic spectrometer for accurate, continuous measurements of atmospheric carbon dioxide concentration. Appl Phys B Lasers Opt 117:645–657.  https://doi.org/10.1007/s00340-014-5878-y CrossRefGoogle Scholar
  42. 42.
    Sigrist MW, Bartlome R, Marinov D, Rey JM, Vogler DE, Wächter H (2008) Trace gas monitoring with infrared laser-based detection schemes. Appl Phys B Lasers Opt 90:289–300.  https://doi.org/10.1007/s00340-007-2875-4. CrossRefGoogle Scholar
  43. 43.
    Teodoro CG, Schramm DU, Sthel MS, Lima GR, Rocha MV, Tavares JR, Vargas H (2010) CO2 laser photoacoustic detection of ethylene emitted by diesel engines used in urban public transports. Infrared Phys Technol 53:151–155.  https://doi.org/10.1016/j.infrared.2009.10.009 CrossRefGoogle Scholar
  44. 44.
    Yao Y, Hoffman AJ, Gmachl CF (2012) Mid-infrared quantum cascade lasers. Nat Photonics 6:432–439.  https://doi.org/10.1038/nphoton.2012.143 CrossRefGoogle Scholar
  45. 45.
    Lima GR, Mota L, Miklós A, Angster J, Dubovski Z, da Silva MG, Sthel M, Vargas H (2014) Sensitive harmonic detection of ammonia trace using a compact photoacoustic resonator at double-pass configuration and a wavelength-modulated distributed feedback diode laser. Appl Phys B Lasers Opt 117:333–341.  https://doi.org/10.1007/s00340-014-5840-z. CrossRefGoogle Scholar
  46. 46.
    Brauer CS, Johnson TJ, Blake TA, Sharpe SW, Sams RL, Tonkyn RG (2014) The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: recent updates. Proc SPIE 9106:910604–910606.  https://doi.org/10.1117/12.2053591 CrossRefGoogle Scholar
  47. 47.
    Knothe G, Krahl J, Van Gerpen J (2010) The biodiesel handbook: 2nd edn, .  https://doi.org/10.1016/C2015-0-02453-4
  48. 48.
    Knothe G, Sharp CA, Ryan TW (2006) Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuel 20:403–408.  https://doi.org/10.1021/ef0502711 CrossRefGoogle Scholar
  49. 49.
    Rakopoulos CD, Antonopoulos KA, Rakopoulos DC, Hountalas DT, Giakoumis EG (2006) Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Convers Manag 47:3272–3287.  https://doi.org/10.1016/j.enconman.2006.01.006 CrossRefGoogle Scholar
  50. 50.
    Sun J, Caton JA, Jacobs TJ (2010) Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Prog Energy Combust Sci 36:677–695.  https://doi.org/10.1016/j.pecs.2010.02.004 CrossRefGoogle Scholar
  51. 51.
    Hoekman SK, Robbins C (2012) Review of the effects of biodiesel on NOx emissions. Fuel Process Technol 96:237–249.  https://doi.org/10.1016/j.fuproc.2011.12.036 CrossRefGoogle Scholar
  52. 52.
    Mohsin R, Majid ZA, Shihnan AH, Nasri NS, Sharer Z (2014) Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Convers Manag 88:821–828.  https://doi.org/10.1016/j.enconman.2014.09.027 CrossRefGoogle Scholar
  53. 53.
    Graham LA, Belisle SL, Rieger P (2009) Nitrous oxide emissions from light duty vehicles. Atmos Environ 43:2031–2044.  https://doi.org/10.1016/j.atmosenv.2009.01.002 CrossRefGoogle Scholar
  54. 54.
    Graham LA, Belisle SL, Baas CL (2008) Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos Environ 42:4498–4516.  https://doi.org/10.1016/j.atmosenv.2008.01.061 CrossRefGoogle Scholar
  55. 55.
    Karavalakis G, Poulopoulos S, Zervas E (2012) Impact of diesel fuels on the emissions of non-regulated pollutants. Fuel 102:85–91.  https://doi.org/10.1016/j.fuel.2012.05.030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. G. Linhares
    • 1
  • M. A. Lima
    • 1
  • G. A. Mothe
    • 2
  • M. P. P. de Castro
    • 1
  • M. G. da Silva
    • 1
  • M. S. Sthel
    • 1
    Email author
  1. 1.Center of Science and TechnologyNorth Fluminense State UniversityCampos dos GoytacazesBrazil
  2. 2.Chemistry and Technology LaboratoryHigher Institutes of Education CENSA – ISECENSACampos dos GoytacazesBrazil

Personalised recommendations