Advertisement

A comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis

  • Maoyuan Luo
  • Dong Tian
  • Fei ShenEmail author
  • Jinguang Hu
  • Yanzong Zhang
  • Gang Yang
  • Yongmei Zeng
  • Shihuai Deng
  • Yaodong Hu
Original Article
  • 101 Downloads

Abstract

An effective pretreatment to improve cellulose accessibility and facilitate glucose release is crucial in a cellulosic ethanol biorefinery. This work comparatively assessed four H2O2-involved pretreatments, i.e., concentrated H3PO4 plus H2O2 (PHP), H2O2–CH3COOH (HPAC), alkaline-H2O2 (AHP), and Fenton chemistry (FC), for their pretreatment performances on wheat straw, poplar, and birch biomass. Substrate characteristics before and after pretreatment were assessed using SEM, XRD, and LSCM. The hydrolytic potentials of the pretreated substrates were compared by Simons’ stain and cellulose–glucose conversion assessment. The results showed that acidic H2O2-involved pretreatments (PHP and HPAC) were more efficient in biomass delignification compared to AHP and FC. PHP pretreatment is more promising for cellulosic ethanol production due to its corresponding high glucose yield (368.0 mg g−1) after enzymatic hydrolysis.

Keywords

Lignocellulose Delignification Hemicellulose removal Enzymatic saccharification Enzyme accessibility 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (grant number 21306120) and the Department of Science and Technology of Sichuan Province (grant numbers 2017HH0047 and 2017SZ0028).

Supplementary material

13399_2018_364_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2674 kb)
13399_2018_364_MOESM2_ESM.docx (7.2 mb)
ESM 2 (DOCX 7388 kb)
13399_2018_364_MOESM3_ESM.docx (5.5 mb)
ESM 3 (DOCX 5585 kb)

References

  1. 1.
    Damm T, Grande PM, Jablonowski ND, Thiele B, Disko U, Mann U, Schurr U, Leitner W, Usadel B, Domínguez De María P, Klose H (2017) OrganoCat pretreatment of perennial plants: synergies between a biogenic fractionation and valuable feedstocks. Bioresour Technol 244:889–896CrossRefGoogle Scholar
  2. 2.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559CrossRefGoogle Scholar
  3. 3.
    Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci 7:1500–1523CrossRefGoogle Scholar
  4. 4.
    Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustain Chem 2:48–53CrossRefGoogle Scholar
  5. 5.
    Sharma HK, Xu C, Qin W (2017) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz 1–17. https://link.springer.com/content/pdf/10.1007%2Fs12649-017-0059-y.pdf. Accessed 12 Nov 2018
  6. 6.
    Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58CrossRefGoogle Scholar
  7. 7.
    Rencoret J, Pereira A, Del Río JC, Martínez ÁT, Gutiérrez A (2017) Delignification and saccharification enhancement of sugarcane byproducts by a laccase-based pretreatment. ACS Sustain Chem Eng 5:7145–7154CrossRefGoogle Scholar
  8. 8.
    Kumar R, Wyman CE (2009) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100:4193–4202CrossRefGoogle Scholar
  9. 9.
    Wang Q, Zhuang X, Wang W, Tan X, Yu Q, Qi W, Yuan Z (2018) Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system. Chem Eng J 334:698–706CrossRefGoogle Scholar
  10. 10.
    Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12CrossRefGoogle Scholar
  11. 11.
    García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613CrossRefGoogle Scholar
  12. 12.
    Li Y, Cui J, Zhang G, Liu Z, Guan H, Hwang H, Aker WG, Wang P (2016) Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour Technol 214:144–149CrossRefGoogle Scholar
  13. 13.
    Lee HR, Lee HW, Lee Y-W, Kazlauskas RJ, Park TH (2017) Improved pretreatment of yellow poplar biomass using hot compressed water and enzymatically-generated peracetic acid. Biomass Bioenergy 105:190–196CrossRefGoogle Scholar
  14. 14.
    Martin B, Sedelmeier J, Bouisseau A, Fernandez-Rodriguez P, Haber J, Kleinbeck F, Kamptmann S, Susanne F, Hoehn P, Lanz M, Pellegatti L, Venturoni F, Robertson J, Willis MC, Schenkel B (2017) Toolbox study for application of hydrogen peroxide as a versatile, safe and industrially-relevant green oxidant in continuous flow mode. Green Chem 19:1439–1448CrossRefGoogle Scholar
  15. 15.
    Kraiem J, Ghedira D, Ollevier T (2016) Hydrogen peroxide/dimethyl carbonate: a green system for epoxidation of N-alkylimines and N-sulfonylimines. One-pot synthesis of N-alkyloxaziridines from N-alkylamines and (hetero) aromatic aldehydes. Green Chem 18:4859–4864CrossRefGoogle Scholar
  16. 16.
    Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011CrossRefGoogle Scholar
  17. 17.
    Sun RC, Tomkinson J, Ma PL, Liang SF (2000) Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydr Polym 42:111–122CrossRefGoogle Scholar
  18. 18.
    Suchy M, Argyropoulos DS (2001) Catalysis and activation of oxygen and peroxide delignification of chemical pulps: a review. In: Oxidative delignification chemistry. American Chemical Society, pp 2–43Google Scholar
  19. 19.
    Noyori R, Aoki M, Sato K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 34:1977–1986CrossRefGoogle Scholar
  20. 20.
    Kato DM, Elía N, Flythe M, Lynn BC (2014) Pretreatment of lignocellulosic biomass using Fenton chemistry. Bioresour Technol 162:273–278CrossRefGoogle Scholar
  21. 21.
    Cao W, Sun C, Liu R, Yin R, Wu X (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour Technol 111:215–221CrossRefGoogle Scholar
  22. 22.
    Wang Q, Wang Z, Shen F, Hu J, Sun F, Lin L, Yang G, Zhang Y, Deng S (2014) Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresour Technol 166:420–428CrossRefGoogle Scholar
  23. 23.
    Saha BC, Cotta MA (2014) Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production. Ind Biotechnol 10:34–41CrossRefGoogle Scholar
  24. 24.
    Wi SG, Cho EJ, Lee D-S, Lee SJ, Lee YJ, Bae H-J (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228CrossRefGoogle Scholar
  25. 25.
    Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453CrossRefGoogle Scholar
  26. 26.
    Dutra ED, Santos FA, Alencar BRA, Reis ALS, de Souza RDFR, Aquino KADS, Morais MA Jr, Menezes RSC (2018) Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Convers Biorefinery 8:225–234CrossRefGoogle Scholar
  27. 27.
    Qiu J, Wang Q, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Song C (2017) Optimizing phosphoric acid plus hydrogen peroxide (PHP) pretreatment on wheat straw by response surface method for enzymatic saccharification. Appl Biochem Biotechnol 181:1123–1139CrossRefGoogle Scholar
  28. 28.
    Wang Q, Hu J, Shen F, Mei Z, Yang G, Zhang Y, Hu Y, Zhang J, Deng S (2016) Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): investigations on pretreatment conditions and structure changes. Bioresour Technol 199:245–257CrossRefGoogle Scholar
  29. 29.
    Tian D, Chandra RP, Lee J-S, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10:157CrossRefGoogle Scholar
  30. 30.
    Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3CrossRefGoogle Scholar
  31. 31.
    Ko JK, Ximenes E, Kim Y, Ladisch MR (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112:447–456CrossRefGoogle Scholar
  32. 32.
    Ding D, Zhou X, Ji Z, You T, Xu F (2016) How does hemicelluloses removal alter plant cell wall nanoscale architecture and correlate with enzymatic digestibility? BioEnergy Res 9:601–609CrossRefGoogle Scholar
  33. 33.
    Siripong P, Duangporn P, Takata E, Tsutsumi Y (2016) Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresour Technol 203:303–308CrossRefGoogle Scholar
  34. 34.
    Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2018) Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 8:12714–12723CrossRefGoogle Scholar
  35. 35.
    Ma R, Guo M, Lin K-T, Hebert VR, Zhang J, Wolcott MP, Quintero M, Ramasamy KK, Chen X, Zhang X (2016) Peracetic acid depolymerization of biorefinery lignin for production of selective monomeric phenolic compounds. Chem-Eur J 22:10884–10891CrossRefGoogle Scholar
  36. 36.
    Tan H, Yang R, Sun W, Wang S (2010) Peroxide−acetic acid pretreatment to remove bagasse lignin prior to enzymatic hydrolysis. Ind Eng Chem Res 49:1473–1479CrossRefGoogle Scholar
  37. 37.
    Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sust Energ Rev 32:713–728CrossRefGoogle Scholar
  38. 38.
    Tian D, Hu J, Chandra RP, Saddler JN, Lu C (2017) Valorizing recalcitrant cellulolytic enzyme lignin via lignin nanoparticles fabrication in an integrated biorefinery. ACS Sustain Chem Eng 5:2702–2710CrossRefGoogle Scholar
  39. 39.
    Wan X, Tian D, Shen F, Hu J, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y (2018) Fractionating wheat straw via phosphoric acid with hydrogen peroxide pretreatment and structural elucidation of the derived lignin. Energy Fuel 32:5218–5225CrossRefGoogle Scholar
  40. 40.
    Shen F, Xiao W, Lin L, Yang G, Zhang Y, Deng S (2013) Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment. Bioresour Technol 130:248–255CrossRefGoogle Scholar
  41. 41.
    Martel P, Gould JM (1990) Cellulose stability and delignification after alkaline hydrogen peroxide treatment of straw. J Appl Polym Sci 39:707–714CrossRefGoogle Scholar
  42. 42.
    Qiu J, Ma L, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2017) Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. Bioresour Technol 238:174–181CrossRefGoogle Scholar
  43. 43.
    Fodi T, Didaskalou C, Kupai J, Balogh GT, Huszthy P, Szekely G (2017) Nanofiltration-enabled in situ solvent and reagent recycle for sustainable continuous-flow synthesis. ChemSusChem 10:3435–3444CrossRefGoogle Scholar
  44. 44.
    Didaskalou C, Kupai J, Cseri L, Barabas J, Vass E, Holtzl T, Szekely G (2018) Membrane-grafted asymmetric organocatalyst for an integrated synthesis–separation platform. ACS Catal 8:7430–7438CrossRefGoogle Scholar
  45. 45.
    Didaskalou C, Buyuktiryaki S, Kecili R, Fonte CP, Szekely G (2017) Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: from materials to sustainable process design. Green Chem 19:3116–3125CrossRefGoogle Scholar
  46. 46.
    De Carvalho DM, Sevastyanova O, Penna LS, Da Silva BP, Lindström ME, Colodette JL (2015) Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind Crop Prod 73:118–126CrossRefGoogle Scholar
  47. 47.
    Ju X, Bowden M, Engelhard M, Zhang X (2014) Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Appl Microbiol Biotechnol 98:4409–4420CrossRefGoogle Scholar
  48. 48.
    Martínez AT (2016) How to break down crystalline cellulose. Science 352:1050–1051CrossRefGoogle Scholar
  49. 49.
    Brahim M, El Kantar S, Boussetta N, Grimi N, Brosse N, Vorobiev E (2016) Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass Bioenergy 95:92–98CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Ecological and Environmental SciencesSichuan Agricultural UniversityChengduPeople’s Republic of China
  2. 2.Rural Environment Protection Engineering & Technology Center of Sichuan ProvinceSichuan Agricultural UniversityChengduPeople’s Republic of China
  3. 3.Department of Wood ScienceThe University of British ColumbiaVancouverCanada
  4. 4.Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityAaltoFinland

Personalised recommendations