Advertisement

Combined pretreatments of eucalyptus sawdust for ethanol production within a biorefinery approach

  • Mairan Guigou
  • María Noel Cabrera
  • Mauricio Vique
  • Melissa Bariani
  • Juan Guarino
  • Mario Daniel Ferrari
  • Claudia LareoEmail author
Original Article
  • 33 Downloads

Abstract

Eucalyptus sawdust is a residue from the pulp and timber industries which can be used as a raw material in a biorefinery. In this work, two consecutive treatment steps were applied to eucalyptus sawdust from a pulp mill, as a fractionation strategy, to recover and preserve lignocellulosic components while enhancing enzyme accessibility to cellulose. The first treatment step assayed was autohydrolysis (170 °C, 40 min). It was followed by (a) mechanical refining (3000 rpm, 0.5 mm), (b) kraft pulping (155 °C, 90–140 min, alkali charge 2.1–3.4%), or (c) soda pulping (155 °C, 90 min, alkali charge 2.4–4.0% NaOH). The remaining solid fractions were enzymatically hydrolyzed using 25 FPU/g of Cellic CTec 2 from Novozymes and a solid content of 13%. The efficiency of the enzymatic hydrolysis was higher than 70% in the case of an additional kraft or soda pulping while only autohydrolysis led to efficiencies lower than 60%. The best hydrolysis parameters and lignin and xylose recovery yields were obtained for autohydrolysis followed for a kraft pulping (cellulose conversion up to 71%, cellulose hydrolysis 95% at 48 h, lignin and xylose recovery 99 and 85%, respectively). The treated solid that reached the highest enzymatic yields was fermented using Saccharomyces cerevisiae in a 3.5-L reactor. The highest bioethanol yield was found for the autohydrolysis-treated solids followed by soda pulping, reaching a value of 250 L of ethanol per tonne of sawdust. Under this condition of combined treatments, 300 kg lignin/t sawdust and 120 kg xylose/t sawdust can be obtained.

Keywords

Eucalyptus Autohydrolysis Soda pulping Kraft pulping Bioethanol 

Notes

Acknowledgements

The financial support was provided by the Agencia Nacional de Investigación e Innovación (ANII-FSE-2014-102701, Uruguay). The authors thank UPM Fray Bentos for kindly supplying the wood pinchips used and Novozymes Latin America Ltda. for supplying the enzymatic complex.

References

  1. 1.
    Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864Google Scholar
  2. 2.
    Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48.  https://doi.org/10.1016/j.biortech.2015.08.085 Google Scholar
  3. 3.
    Farinha e Silva CA, Rodrigues Neves M, Porto M (2017) A industria de celulose e papel no Brasil. Guia ABTCP - Fornecedores & Fabricantes: 16–25Google Scholar
  4. 4.
    Uruguay XXI (2017) Sector Forestal- Oportunidades de Inversión. In: Sect. For. Invers. http://www.uruguayxxi.gub.uy/inversiones/wp-content/uploads/sites/3/2014/09/Sector-Forestal-Uruguay-XXI-2014.pdf. Accessed 15 Oct 2017
  5. 5.
    ODEPA (2015) Produccion de la industria forestal. http://www.odepa.cl/produccion-de-la-industria-forestal-4/. Accessed 15 Feb 2016
  6. 6.
    McIntosh S, Zhang Z, Palmer J, Wong H-H, Doherty OS, Vancov T (2016) Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels Bioprod Biorefin 10:346–358.  https://doi.org/10.1002/bbb.1651 Google Scholar
  7. 7.
    Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78.  https://doi.org/10.1016/j.biombioe.2012.03.026 Google Scholar
  8. 8.
    Bozell JJ (2010) An evolution from pretreatment to fractionation will enable successful development of the integrated biorefinery. BioResources 5:1326–1327Google Scholar
  9. 9.
    Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58.  https://doi.org/10.1016/j.biortech.2015.08.061 Google Scholar
  10. 10.
    Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202Google Scholar
  11. 11.
    Gütsch JS, Nousiainen T, Sixta H (2012) Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour Technol 109:77–85.  https://doi.org/10.1016/j.biortech.2012.01.018 Google Scholar
  12. 12.
    Sun S, Cao X, Sun S, Xu F, Song X, Sun RC, Jones GL (2014) Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol Biofuels 7:1–12.  https://doi.org/10.1186/s13068-014-0116-8 Google Scholar
  13. 13.
    Smook GA (2003) Handbook for pulp & paper technologists, 3rd edn. Tappi Press, VancouverGoogle Scholar
  14. 14.
    Jones BW, Venditti R, Park S, Jameel H, Koo B (2013) Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresour Technol 147:353–360.  https://doi.org/10.1016/j.biortech.2013.08.030 Google Scholar
  15. 15.
    Park J, Jones B, Koo B, Chen X, Tucker M, Yu J, Pschorn T, Venditti R, Park S (2016) Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour Technol 199:59–67.  https://doi.org/10.1016/j.biortech.2015.08.059 Google Scholar
  16. 16.
    Kim SM, Dien BS, Singh V (2016) Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnol Biofuels 9:1–15.  https://doi.org/10.1186/s13068-016-0505-2 Google Scholar
  17. 17.
    Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101:8706–8712.  https://doi.org/10.1016/j.biortech.2010.06.093 Google Scholar
  18. 18.
    Rodríguez-Quinele V, Clavijo L, Cabrera MN (2015) Valorization prior to combustion: removal of hemicelluloses from eucalyptus sawdust . In: 2do Simposio Internacional sobre Materiales Lignocelulósicos. Concepcion-ChileGoogle Scholar
  19. 19.
    Gullichsen J (1999) Fiber line operations. In: Gullichsen J, Fogelholm CJ (eds) Chemical pulping. Fapet Oy, Jyväskylä, Finland, Chapter 2, p A18-A243Google Scholar
  20. 20.
    Cabrera MN, Bariani M, Guarino J, Clavijo L, Guigou MD, Vique M, Ferrari MD, Lareo C, Cassella N (2017) Autohydrolisis / kraft pulping as a pretreatment for bioethanol, furfural and acetic acid production. In: 8th International Colloquium on Eucalyptus Pulp Proceedings. Concepción-ChileGoogle Scholar
  21. 21.
    TAPPI (2007) Solvent extractives of wood and pulp. T 204 cm-07Google Scholar
  22. 22.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure (LAP), NREL/TP-510-42623. Golden (CO)- USAGoogle Scholar
  23. 23.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42622. Golden (CO)- USAGoogle Scholar
  24. 24.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42618. Golden (CO)- USAGoogle Scholar
  25. 25.
    Overend R, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatment. Philos Trans R Soc Lond A 321:523–536Google Scholar
  26. 26.
    Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley & Sons, Inc, United States of AmericaGoogle Scholar
  27. 27.
    Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491.  https://doi.org/10.1016/j.fuel.2014.06.061 Google Scholar
  28. 28.
    Ishiguro M, Endo T (2015) Effect of the addition of calcium hydroxide on the hydrothermal-mechanochemical treatment of eucalyptus. Bioresour Technol 177:298–301.  https://doi.org/10.1016/j.biortech.2014.10.135 Google Scholar
  29. 29.
    Ishiguro M, Endo T (2014) Addition of alkali to the hydrothermal-mechanochemical treatment of eucalyptus enhances its enzymatic saccharification. Bioresour Technol 153:322–326.  https://doi.org/10.1016/j.biortech.2013.12.015 Google Scholar
  30. 30.
    de Carvalho DM, de Queiroz JH, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crop Prod 94:932–941.  https://doi.org/10.1016/j.indcrop.2016.09.069 Google Scholar
  31. 31.
    de Carvalho DM, Sevastyanova O, de Queiroz JH, Colodette JL (2016) Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw. Energ Convers Manage 124:315–324.  https://doi.org/10.1016/j.enconman.2016.07.029
  32. 32.
    Cebreiros F, Ferrari MD, Lareo C (2017) Combined autohydrolysis and alkali pretreatments for cellulose enzymatic hydrolysis of Eucalyptus grandis wood. Biomass Conv Biorefin 8:33–42.  https://doi.org/10.1007/s13399-016-0236-4
  33. 33.
    Cebreiros F, Guigou MD, Cabrera MN (2017) Integrated forest biorefineries: recovery of acetic acid as a by-product from eucalyptus wood hemicellulosic hydrolysates by solvent extraction. Ind Crop Prod 109:101–108.  https://doi.org/10.1016/j.indcrop.2017.08.012 Google Scholar
  34. 34.
    Rodríguez-López J, Romaní A, Gonzalez-Muñoz J, Garrote G, Parajo JC (2012) Extracting value-added products before pulping : hemicellulosic ethanol from Eucalyptus globulus wood. Holzforschung 66:591–599.  https://doi.org/10.1515/hf-2011-0204 Google Scholar
  35. 35.
    Sjöström E (1993) Wood chemistry—fundamentals and applications, 2nd edn. Academic Press, Inc., CaliforniaGoogle Scholar
  36. 36.
    Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002.  https://doi.org/10.1016/j.biortech.2009.11.007 Google Scholar
  37. 37.
    Sambusiti C, Licari A, Solhy A, Aboulkas A, Cacciaguerra T, Barakat A (2015) One-pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse. Bioresour Technol 181:200–206.  https://doi.org/10.1016/j.biortech.2015.01.058 Google Scholar
  38. 38.
    Marzialetti T, Salazar JP, Ocampos C, Chandra R, Chung P, Saddler J, Parra C (2014) Second-generation ethanol in Chile: optimisation of the autohydrolysis of Eucalyptus globulus. Biomass Conv Biorefin 4:125–135.  https://doi.org/10.1007/s13399-014-0114-x
  39. 39.
    Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312.  https://doi.org/10.1016/j.fuel.2011.12.013 Google Scholar
  40. 40.
    Reina L, Botto E, Mantero C, Moyna P, Menéndez P (2016) Production of second generation ethanol using Eucalyptus dunnii bark residues and ionic liquid pretreatment. Biomass Bioenergy 93:116–121.  https://doi.org/10.1016/j.biombioe.2016.06.023 Google Scholar
  41. 41.
    Lienqueo ME, Ravanal MC, Pezoa-Conte R, Cortínez V, Martínez L, Niklitschek T, Salazar O, Carmona R, García A, Hyvärinen S, Mäki-Arvela P, Mikkola J-P (2016) Second generation bioethanol from Eucalyptus globulus Labill and Nothofagus pumilio: ionic liquid pretreatment boosts the yields. Ind Crop Prod 80:148–155.  https://doi.org/10.1016/j.indcrop.2015.11.039 Google Scholar
  42. 42.
    Chiarello LM, Ramos CEA, Neves PV, Ramos LP (2016) Production of cellulosic ethanol from steam-exploded Eucalyptus urograndis and sugarcane bagasse at high total solids and low enzyme loadings. Sustain Chem Process 4:15.  https://doi.org/10.1186/s40508-016-0059-4 Google Scholar
  43. 43.
    Romaní A, Ruiz HA, Teixeira JA, Domingues L (2016) Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach. Renew Energy 95:1–9.  https://doi.org/10.1016/j.renene.2016.03.106 Google Scholar
  44. 44.
    Liguori R, Ventorino V, Pepe O, Faraco V (2016) Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Appl Microbiol Biotechnol 100:597–611.  https://doi.org/10.1007/s00253-015-7125-9 Google Scholar
  45. 45.
    Fockink DH, Chiarello LM, Ramos LP (2016) Enzymatic hydrolysis with Cellic CTec3 at high total solids and cellulosic ethanol production. In: XII Seminário Brasileiro de Tecnologia Enzimática ENZITEC 2016. Caxias do Sul (UCS)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Bioingeniería, Instituto de Ingeniería Química, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Grupo de Ingeniería de Procesos Forestales, Instituto de Ingeniería Química, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations