Biomass Conversion and Biorefinery

, Volume 8, Issue 3, pp 689–697 | Cite as

Single-stage ultrasound-assisted process to extract and convert α-solanine and α-chaconine from potato peels into β-solanine and β-chaconine

  • Elenilson G. Alves-Filho
  • Valéria M. Sousa
  • Paulo R. V. Ribeiro
  • Sueli Rodrigues
  • Edy S. de Brito
  • Brijesh K. Tiwari
  • Fabiano A. N. FernandesEmail author
Original Article


Potato peels are rich in α-solanine and α-chaconine, which are glycoalkaloids with known pharmacological activity but that have high cytotoxicity. Their aglycones (β-solanine and β-chaconine) have the same pharmacological activity but with a much lower cytotoxicity. In this work, we applied ultrasound technology to extract α-solanine and α-chaconine from potato peel and at the same time convert these molecules into β-solanine and β-chaconine, in a single-stage process without resorting to organic solvents. The extraction was studied varying ultrasonic power density (20, 35, and 50 W/L) and processing time (5, 10, 20, and 40 min) using an ultrasonic bath operating at 25 kHz. The chemical analysis was done by UHPLC-qTOF-MS and the results were evaluated by HCA, PCA, and PLS-DA chemometric analysis. The analysis of the single-stage procedure pointed to the viability of concomitant extraction and chemical conversion of α-solanine and α-chaconine into β-solanine and β-chaconine when operating at an ultrasonic power density of 35 and 50 W/L and subjecting the potato peel power to 20 and 40 min of ultrasound.


Glycoalkaloids Solanum tuberosum Solanine Chaconine Ultrasound Chemical conversion Extraction 



The authors thank the NMR Lab of UFSCar (São Carlos, Brazil) for enabling the use of the chemometric program.

Funding information

The authors thank the financial support and scholarships provided by the Brazilian funding agencies CAPES, FUNCAP, and CNPQ.


  1. 1.
    Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54:8655–8681CrossRefGoogle Scholar
  2. 2.
    Schieber A, Saldana MDA (2009) Potato peels: a source of nutritionally and pharmacologically interesting compounds—a review. FoodReview 2:23–29Google Scholar
  3. 3.
    Wijngaard HH, Ballay M, Brunton N (2012) The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem 133:1123–1130CrossRefGoogle Scholar
  4. 4.
    Hossain MB, Tiwari BK, Gangopadhyay N, O’Donnell CP, Brunton NP, Rai DK (2014) Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason Sonochem 21:1470–1476CrossRefGoogle Scholar
  5. 5.
    Mader J, Rawel H, Kroh LW (2009) Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing. J Agric Food Chem 57:6292–6297CrossRefGoogle Scholar
  6. 6.
    Austin S, Lojkowska E, Ehlenfeldt MK et al (1988) Fertile interspecific somatic hybrids of Solanum: a novel source of resistance to Erwinia soft rot. Phytopathology 78:1216–1220CrossRefGoogle Scholar
  7. 7.
    Fewell AM, Roddick JG (1993) Interactive antifungal activity of the glycoalkaloids alpha-solanine and alpha-chaconine. Phytochemistry 33:323–328CrossRefGoogle Scholar
  8. 8.
    Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1997) Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J 74:15–21CrossRefGoogle Scholar
  9. 9.
    Morris SC, Lee TH (1984) The toxicity and teratogenicity of Solanaceae glycoalkaloids, particularly those of the potato (Solanum tuberosum): a review. Food Technol 36:118–124Google Scholar
  10. 10.
    Slanina P (1990) Solanine (glycoalkaloids) in potatoes: toxicological evaluation. Food Chem Toxicol 28:759–761CrossRefGoogle Scholar
  11. 11.
    Kenny OM, McCarthy CM, Brunton NP et al (2013) Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci 92:775–782CrossRefGoogle Scholar
  12. 12.
    Phillips BJ, Hughes JA, Phillips JC, Walters DG, Anderson D, Tahourdin CSM (1996) A study of the toxic hazard that might be associated with the consumption of green potato tops. Food Chem Toxicol 34:439–448CrossRefGoogle Scholar
  13. 13.
    Glisic SB, Ristic M, Skala DU (2011) The combined extraction of sage (Salvia officinalis L.): ultrasound followed by supercritical CO2 extraction. Ultrason Sonochem 18:318–326CrossRefGoogle Scholar
  14. 14.
    Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313CrossRefGoogle Scholar
  15. 15.
    Wijngaard HH, Hossain MB, Ri DK, Brunton N (2012) Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 46:505–513CrossRefGoogle Scholar
  16. 16.
    Rayburn JR, Banlle JA, Friedman M (1994) The role of the carbohydrate side chains of potato glycoalkaloids in developmental toxicity. J Agric Food Chem 42:1511–1515CrossRefGoogle Scholar
  17. 17.
    Munger LH, Nystrom L (2014) Enzymatic hydrolysis of steryl glycosides for their analysis in foods. Food Chem 163:202–211CrossRefGoogle Scholar
  18. 18.
    Nikolic NC, Stankovic MZ (2003) Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid-liquid-liquid systems. J Agric Food Chem 51:1845–1849CrossRefGoogle Scholar
  19. 19.
    Löning JM, Horst C, Hoffmann U (2002) Investigations on the energy conversion in sonochemical processes. Ultrason Sonochem 9:169–179CrossRefGoogle Scholar
  20. 20.
    Alves-Filho EG, Sartori L, Silva LMA et al (2015) 1H qNMR and chemometric analyses of urban wastewater. J Braz Chem Soc 26:1257–1264Google Scholar
  21. 21.
    Samarin AM, Poorazarang H, Hematyar N, Elhamirad A (2012) Phenolics in potato peels: extraction and utilization as natural antioxidants. World Appl Sci J 18:191–195Google Scholar
  22. 22.
    Singhai PK, Sarma BK, Srivastava JS (2011) Phenolic acid content in potato peel determines natural infection of common scab caused by Streptomyces spp. World J Microbiol Biotechnol 27:1559–1567CrossRefGoogle Scholar
  23. 23.
    Dastmalchi K, Kallash L, Wang I, Phan VC, Huang W, Serra O, Stark RE (2015) Defensive armor of potato tubers: nonpolar metabolite profiling, antioxidant assessment, and solid-state NMR compositional analysis of suberin-enriched wound-healing tissues. J Agric Food Chem 63:6810–6822CrossRefGoogle Scholar
  24. 24.
    Fernandes FAN, Gallão MI, Rodrigues S (2008) Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT Food Sci Technol 41:604–610CrossRefGoogle Scholar
  25. 25.
    Fernandes FAN, Rodrigues S (2008) Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Dry Technol 26:1509–1516. CrossRefGoogle Scholar
  26. 26.
    Ghafoor K, Choi YH, Jeon JY, Jo LH (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem 57:4988–4994CrossRefGoogle Scholar
  27. 27.
    Rodrigues S, Fernandes FAN (2009) Ultrasound-assisted extraction. Stewart Postharvest Rev 5:1–11. Google Scholar
  28. 28.
    Rodrigues S, Pinto GAS, Fernandes FAN (2008) Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason Sonochem 15:95–100CrossRefGoogle Scholar
  29. 29.
    Rodrigues S, Fernandes FAN, de Brito ES, Sousa AD, Narain N (2015) Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind Crop Prod 69:400–407CrossRefGoogle Scholar
  30. 30.
    Zywicki B, Catchpole G, Draper J, Fiehn O (2005) Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. Anal Biochem 336:178–186CrossRefGoogle Scholar
  31. 31.
    Matsuda F, Morino K, Miyazawa H, Miyashita M, Miyagawa H (2004) Determination of potato glycoalkaloids using high-pressure liquid chromatography-electrospray ionisation/mass spectrometry. Phytochem Anal 15:121–124CrossRefGoogle Scholar
  32. 32.
    Tata A, Perez CJ, Hamid TS, Bayfield MA, Ifa DR (2015) Analysis of metabolic changes in plant pathosystems by imprint imaging desi-ms. J Am Soc Mass Spectrom 26:641–648CrossRefGoogle Scholar
  33. 33.
    Jensen PH, Jacobsen OS, Henriksen T, Strobel BW, Hansen HCB (2009) Degradation of the potato glycoalkaloids—alpha-solanine and alpha-charconine in groundwater. Bull Environ Contam Toxicol 82:668–672CrossRefGoogle Scholar
  34. 34.
    Silva LMA, Alves-Filho EG, Choze R et al (2012) 1H HRMAS NMR spectroscopy and chemometrics for evaluation of metabolic changes in Citrus sinensis caused by Xanthomonas axonopodis pv. citri. J Braz Chem Soc 23:1054–1061CrossRefGoogle Scholar
  35. 35.
    Oliveira CR, Carneiro RL, Ferreira AG (2014) Tracking the degradation of fresh orange juice and discrimination of orange varieties: an example of NMR in coordination with chemometrics analyses. Food Chem 164:446–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elenilson G. Alves-Filho
    • 1
    • 2
  • Valéria M. Sousa
    • 3
  • Paulo R. V. Ribeiro
    • 2
  • Sueli Rodrigues
    • 1
  • Edy S. de Brito
    • 2
  • Brijesh K. Tiwari
    • 4
  • Fabiano A. N. Fernandes
    • 1
    • 3
    Email author
  1. 1.Departamento de Engenharia de AlimentosUniversidade Federal do CearáFortalezaBrazil
  2. 2.Embrapa Agroindústria TropicalFortalezaBrazil
  3. 3.Departamento de Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Teagasc, Ashtown Food Research CentreDublin 15Ireland

Personalised recommendations