Regenerative reverse-flow reactor system for cracking of producer gas tars

  • 216 Accesses

  • 1 Citations


The gas produced in a biomass gasifier contains high amounts of tars which have to be removed prior to downstream utilization. Calcined dolomite is catalytically active for tar cracking reactions and resistant to sulfur poisoning. In this study, calcined dolomite was used as bed material in a reverse-flow reactor for cracking of tars in a model synthesis gas. 1-methylnaphthalene was used as model tar compound at a concentration of 15,000 mg/Nm3. The reactor system was operated at temperatures between 700 and 850 °C in the active zone. Total tar conversion was over 95 % for the system under reverse-flow conditions at the highest temperature. Already at the lowest temperature, up to 78 % of the 1-methylnaphthlene was converted, but mainly to other more stable tar compounds such as naphthalene and benzene, reaching a total tar conversion of only 23 %. To produce tar-free gas, higher temperatures are thus needed. The use of very high temperatures does, however, lead to a significant decrease in the specific area of the dolomite, as shown by BET surface measurements. The dolomite was further characterized with x-ray diffraction and energy dispersive spectroscopy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    The definition of Evans and Milne states that “the organics, produced under thermal or partial-oxidation regimes (gasification) of any organic material, are called ‘tars’ and are generally assumed to be largely aromatic.”

  2. 2.

    A movie showing the flare is available as electronic supplementary material.


  1. 1.

    Albertazzi S, Basile F, Brandin J et al (2005) The technical feasibility of biomass gasification for hydrogen production. Catal Today 106:297–300. doi:10.1016/j.cattod.2005.07.160

  2. 2.

    Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581. doi:10.3390/en20300556

  3. 3.

    Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sustain Energy Rev 15:366–378. doi:10.1016/j.rser.2010.08.003

  4. 4.

    Kirubakaran V, Sivaramakrishnan V, Nalini R et al (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186. doi:10.1016/j.rser.2007.07.001

  5. 5.

    Xu C, Donald J, Byambajav E, Ohtsuka Y (2010) Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89:1784–1795. doi:10.1016/j.fuel.2010.02.014

  6. 6.

    Tunå P, Svensson H, Brandin J (2010) Modeling of reverse-flow partial oxidation process for gasifier product gas upgrading. Fifth International Conference on Thermal Engineering: Theory and Applications, Marrakesh

  7. 7.

    Evans RJ, Milne TA (1997) Chemistry of tar formation and maturation. In: Bridgwater A, Boocock D (eds) Developments in Thermochemical Biomass Conversion, vol 2. Blackie Academic & Professional, London, pp 803–816

  8. 8.

    Milne TA, Abatzoglou N, Evans RJ (1998) Biomass gasifier “tars”: their nature, formation, and conversion. NREL/TP-570-25357. National renewable energy laboratory, Golden, doi: 10.2172/3726

  9. 9.

    Anis S, Zainal ZA (2011) Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew Sustain Energy Rev 15:2355–2377. doi:10.1016/j.rser.2011.02.018

  10. 10.

    Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43:6911–6919. doi:10.1021/ie0498403

  11. 11.

    Zhang R, Brown RC, Suby A, Cummer K (2004) Catalytic destruction of tar in biomass derived producer gas. Energy Convers Manag 45:995–1014. doi:10.1016/j.enconman.2003.08.016

  12. 12.

    Yung MM, Jablonski WS, Magrini-Bair KA (2009) Review of catalytic conditioning of biomass-derived syngas. Energy Fuel 23:1874–1887. doi:10.1021/ef800830n

  13. 13.

    Dayton D (2002) A review of the literature on catalytic biomass tar destruction milestone completion report. NREL/TP-510-32815. National Renewable Energy Laboratory, Golden

  14. 14.

    Olivares A, Aznar MP, Caballero MA et al (1997) Biomass gasification: produced gas upgrading by in-bed use of dolomite. Ind Eng Chem Res 36:5220–5226. doi:10.1021/ie9703797

  15. 15.

    Orío A, Corella J, Narváez I (1997) Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Ind Eng Chem Res 36:3800–3808. doi:10.1021/ie960810c

  16. 16.

    Delgado J, Aznar MP, Corella J (1996) Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: life and usefulness. Ind Eng Chem Res 35:3637–3643. doi:10.1021/ie950714w

  17. 17.

    Simell PA, Hepola JO, Krause AOI (1997) Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76:1117–1127. doi:10.1016/S0016-2361(97)00109-9

  18. 18.

    Świerczyński D, Libs S, Courson C, Kiennemann A (2007) Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Appl Catal B Environ 74:211–222. doi:10.1016/j.apcatb.2007.01.017

  19. 19.

    Zhao Z, Kuhn JN, Felix LG et al (2008) Thermally impregnated Ni–Olivine catalysts for tar removal by steam reforming in biomass gasifiers. Ind Eng Chem Res 47:717–723. doi:10.1021/ie071089l

  20. 20.

    Kuhn JN, Zhao Z, Senefeld-Naber A et al (2008) Ni-olivine catalysts prepared by thermal impregnation: structure, steam reforming activity, and stability. Appl Catal A Gen 341:43–49. doi:10.1016/j.apcata.2007.12.037

  21. 21.

    Li C, Suzuki K (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—an overview. Renew Sustain Energy Rev 13:594–604. doi:10.1016/j.rser.2008.01.009

  22. 22.

    Han J, Kim H (2008) The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew Sustain Energy Rev 12:397–416. doi:10.1016/j.rser.2006.07.015

  23. 23.

    Devi L, Ptasinski KJ, Janssen FJJG (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24:125–140. doi:10.1016/S0961-9534(02)00102-2

  24. 24.

    Matros YS, Bunimovich GA (1995) Control of volatile organic compounds by the catalytic reverse process. Ind Eng Chem Res 34:1630–1640. doi:10.1021/ie00044a016

  25. 25.

    Matros YS, Bunimovich GA (1996) Reverse-flow operation in fixed bed catalytic reactors. Catal Rev 38:1–68. doi:10.1080/01614949608006453

  26. 26.

    Haynes TN, Georgakis C, Caram HS (1992) The application of reverse flow reactors to endothermic reactions. Chem Eng Sci 47:2927–2932. doi:10.1016/0009-2509(92)87153-H

  27. 27.

    Van de Beld L, Wagenaar BM, Prins W (1997) Cleaning of hot producer gas in a catalytic adiabatic packed bed reactor with periodic flow reversal. In: Bridgwater AV, Boocock DGB (eds) Developments in thermochemical biomass conversion, vol 2. Blackie Academic & Professional, London, pp 907–920

  28. 28.

    Svensson H, Tunå P, Hulteberg C, Brandin J (2012) Modeling of soot formation during partial oxidation of producer gas. Fuel 106:271–278. doi:10.1016/j.fuel.2012.10.061

  29. 29.

    Myrén C, Hörnell C, Björnbom E, Sjöström K (2002) Catalytic tar decomposition of biomass pyrolysis gas with a combination of dolomite and silica. Biomass Bioenergy 23:217–227. doi:10.1016/S0961-9534(02)00049-1

  30. 30.

    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi:10.1021/ja01145a126

  31. 31.

    Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931. doi:10.1063/1.1746689

  32. 32.

    Aldén H, Björkman E, Carlsson M, Waldheim L (1994) Catalytic cracking of naphthalene on dolomite. In: Bridgwater AV (ed) Advances in thermochemical biomass conversion, vol 1. Blackie Academic & Professional, London, pp 216–232

  33. 33.

    Garcia XA, Hüttinger KJ (1989) Steam gasification of naphthalene as a model reaction of homogeneous gas/gas reactions during coal gasification. Fuel 68:1300–1310. doi:10.1016/0016-2361(89)90246-9

  34. 34.

    Devi L, Ptasinski KJ, Janssen FJJG (2005) Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar. Fuel Process Technol 86:707–730. doi:10.1016/j.fuproc.2004.07.001

  35. 35.

    Coll R, Salvadó J, Farriol X, Montané D (2001) Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation. Fuel Process Technol 74:19–31. doi:10.1016/S0378-3820(01)00214-4

  36. 36.

    Boucif F, Marouf-Khelifa K, Batonneau-Gener I et al (2010) Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption. Powder Technol 201:277–282. doi:10.1016/j.powtec.2010.04.013

  37. 37.

    Sasaki K, Qiu X, Hosomomi Y et al (2013) Effect of natural dolomite calcination temperature on sorption of borate onto calcined products. Microporous Mesoporous Mater 171:1–8. doi:10.1016/j.micromeso.2012.12.029

  38. 38.

    Ávila I, Crnkovic PM, Milioli FE, Luo KH (2012) Investigation of the pore blockage of a Brazilian dolomite during the sulfation reaction. Appl Surf Sci 258:3532–3539. doi:10.1016/j.apsusc.2011.11.108

Download references


The research was funded by the Swedish energy Agency through the Swedish Gas Technology Centre and the Danish Gas Technology Centre, in cooperation with the industrial partners ABB Corporate Research, Alufluor AB, E.ON Gasification Development AB, E.ON Sverige AB, Göteborg Energi AB, Statoil ASA, Stockholm Gas AB, Tekniska Verken i Linköping AB, ÅForsk, and Öresundskraft AB.

Author information

Correspondence to Fredric Bauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 6556 kb)


(MPG 6556 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tunå, P., Bauer, F., Hulteberg, C. et al. Regenerative reverse-flow reactor system for cracking of producer gas tars. Biomass Conv. Bioref. 4, 43–51 (2014) doi:10.1007/s13399-013-0088-0

Download citation


  • Biomass gasification
  • Tars
  • Tar removal
  • Dolomite