Quasi-Einstein structures and almost cosymplectic manifolds

  • Xiaomin ChenEmail author
Original Paper


In this article, we study almost cosymplectic manifolds admitting quasi-Einstein structures \((g, V, m, \lambda )\). First we prove that an almost cosymplectic \((\kappa ,\mu )\)-manifold is locally isomorphic to a Lie group if \((g, V, m, \lambda )\) is closed and on a compact almost \((\kappa ,\mu )\)-cosymplectic manifold there do not exist quasi-Einstein structures \((g, V, m, \lambda )\), in which the potential vector field V is collinear with the Reeb vector field \(\xi \). Next we consider an almost \(\alpha \)-cosymplectic manifold admitting a quasi-Einstein structure and obtain some results. Finally, for a K-cosymplectic manifold with a closed, non-steady quasi-Einstein structure, we prove that it is \(\eta \)-Einstein. If \((g, V, m, \lambda )\) is non-steady and V is a conformal vector field, we obtain the same conclusion.


Quasi-Einstein structures Almost cosymplectic \((\kappa {, } \mu )\)-manifolds Almost \(\alpha \)-cosymplectic manifolds Cosymplectic manifolds Einstein manifolds 

Mathematics Subject Classification

53C25 53D15 



  1. 1.
    Aktan, N., Yildirim, M., Murathan, C.: Almost \(f\)-cosymplectic manifolds. Mediterr. J. Math. 11, 775–787 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bazzoni, G., Goertsches, O.: K-Cosymplectic manifolds. Ann. Glob. Anal. Geom. 47, 1–32 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barros, A., Gomes, J.N.: Triviality of compact \(m\)-quasi-Einstein manifolds. Res. Math. 71(1), 241–250 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barros, A., Ribeiro Jr., E.: Integral formulae on quasi-Einstein manifolds and applications. Glasgow Math. J. 54, 213–223 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser, Boston (2010)CrossRefGoogle Scholar
  6. 6.
    Boyer, C.P., Galicki, K.: Einstein manifolds and contact geometry. Proc. Am. Math. Soc. 129, 2419–2430 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cappelletti-Montano, B., Pastore, A.M.: Einstein-like conditions and cosymplectic geometry. J. Adv. Math. Stud. 3(2), 27–40 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cappelletti-Montano, B., De Nicola, A., Yudin, A.I.: A survey on cosymplectic geometry. Rev. Math. Phys. 25, 1343002 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Case, J., Shu, Y.J., Wei, G.: Rigidity of Quasi-Einstein Metrics. Diff. Geom. Appl. 29, 93–100 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Case, J.: On the non-existence of quasi-Einstein metrics. Pac. J. Math 248(2), 227–284 (2010)CrossRefGoogle Scholar
  11. 11.
    Dacko, P.: On almost cosymplectic manifolds with the structure vector field \(\xi \) belonging to the \(\kappa \)-nullity distribution. Balkan J. Geom. Appl 5(2), 47–60 (2000)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Endo, H.: Non-existence of almost cosymplectic manifolds satisfying a certain condition. Tensor (N.S.) 284(3), 272 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ghosh, A.: \(m\)-quasi-Einstein metric and contact geometry. RACSAM 113(3), 2587–2600 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ghosh, A.: Quasi-Einstein contact metric manifolds. Glasgow Math. J. 57, 569–577 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Goldberg, S.I., Yano, K.: Integrability of almost cosymplectic structure. Pac. J. Math. 31, 373–382 (1969)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Limoncu, M.: Modification of the Ricci tensor and applications. Arch. Math. 95, 191–199 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kim, T.W., Pak, H.K.: Canonical foliations of certain classes of almost contact metric structres. Acta Math. Sin. Eng. Ser. Aug. 21, 841–846 (2005)CrossRefGoogle Scholar
  18. 18.
    Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tôhoku Math. J. 24, 93–103 (1972)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Öztürk, H., Aktan, N., Murathan, C.: Almost \(\alpha \)-cosymplectic \((\kappa ,\mu ,\nu )\)-spaces. arXiv:1007.0527v1
  20. 20.
    Wang, L.F.: Rigid properties of quasi-Einstein metrics. Proc. Am. Math. Soc. 139, 3679–3689 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, L.F.: Gap results for compact quasi-Einstein metrics. Sci. China Math. 61(5), 943–954 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2020

Authors and Affiliations

  1. 1.College of ScienceChina University of Petroleum (Beijing)BeijingChina

Personalised recommendations