Advertisement

Quarantine in an epidemic model with seasonality

  • Carmen CollEmail author
  • Elena Sánchez
Original Paper
  • 40 Downloads

Abstract

In this work, we focus on the periodicity of recurrent epidemic patterns and propose a periodic model that includes quarantine as a control strategy. So, we consider that susceptible individuals can be quarantined (Q) and then return to the recovered class once it is determined that they are not infected. We use the basic reproductive number \({\mathcal {R}}_0\) to analyze the spread of the disease. To study the effectiveness of quarantine in the spread of the disease, a new parameter \({\mathcal {R}}_q\) is introduced. This is defined as the average number of new infections that a case generates, in a totally susceptible population when quarantine is applied to individuals during the time they are infectious. The value of \({\mathcal {R}}_q\) will be closely related to both the intensity of the intervention and the severity of the epidemic in the absence of such intervention. The behavior in absence of control will be determined by the value of the basic reproductive number \({\mathcal {R}}_0\).

Keywords

Quarantine Periodic model Epidemic model Basic reproductive number 

Mathematics Subject Classification

92D30 93C55 93D20 

Notes

Acknowledgements

This work is supported by Spanish Grant MTM2013-43678-P.

References

  1. 1.
    Allen, L., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. 1–19, 1127–1147 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bacaër, N., Ait, E.H.D.: On the biological interpretation of a definition for the parameter \(R_0\) in periodic population models. J. Math. Biol. 65, 601–621 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berman, A., Plemmons, R.J.: Non-negative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Castillo-Chavez, C., Castillo-Garsow, C.W., Yakubu, A.A.: Mahematical models of isolation and quarantine. JAMA 290, 2876–2877 (2003)CrossRefGoogle Scholar
  5. 5.
    Cantó, B., Coll, C., Sánchez, E.: A study on vaccination models for a seasonal epidemic process. Appl. Math. Comput. 243, 152–160 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Castillo-Chavez, C., Feng, Z., Huang, W.: On the computation of \(R_0\) and its role on global stability. Inst. Math. Appl. 125, 229–251 (2002)zbMATHGoogle Scholar
  7. 7.
    Cauchemez, S., Valleron, A.J., Boelle, P.Y., Flahault, A., Ferguson, N.M.: Estimating the impact of school closure on inluenza transmission from Sentinel data. Nature 452, 750–754 (2008)CrossRefGoogle Scholar
  8. 8.
    Cao, H., Zhou, Y.: The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discret. Contin. Dyn. Syst. Ser. B 18(1), 37–56 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Coburn, B.J., Wagner, B.G., Blower, S.: Modeling influenza epidemics and pandemics: insights into the future of swine flu. BMC Med. 7(30), (2009). http://www.biomedcentral.com/1741-7015/7/30
  10. 10.
    Cushing, J.M., Ackleh, A.S.: A net reproductive number for periodic matrix models. J. Biol. Dyn. 6(2), 166–188 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Davis, P.: Circulant Matrices. Wiley, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Epstein, J.M., Goedecke, D.M., Yu, F., Morris, R.J., Wagener, D.K., Bobashev, G.V.: Controlling pandemic flu: the value of international air travel restrictions. PLoS One 452, e401 (2007)CrossRefGoogle Scholar
  13. 13.
    Fumanelli, L., Ajelli, M., Merler, S., Ferguson, N.M., Cauchemez, S.: Model-based comprehensive analysis of school closure policies for mitigating influenza epidemics and pandemics. PLoS Comput. Biol. (2016).  https://doi.org/10.1371/journal.pcbi.1004681 CrossRefGoogle Scholar
  14. 14.
    Hethcote, H., Zhien, M., Shengbing, L.: Effects of quarantine in six endemic models for infectious diseases. Math. Biosci. 180, 141–160 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Li, C.K., Schneider, H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Meyer, R.A., Burrus, C.S.: A unified analysis of multirate and periodically time-varying digital filters. IEEE Trans. Circuits Syst. 22(3), 162–168 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mubayi, A.M., Zaleta, C.K., Martcheva, M., Castillo-Chavez, C.: A cost-based comparison of quarantine strategies for new emerging diseases. Math. Biosci. Eng. 7(3), 687–717 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Park, B., Verriest, E.I.: Canonical forms on discrete linear periodically time-varying system and a control application. In: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, pp 1220–1225 (1989)Google Scholar
  19. 19.
    Stone, L., Olinky, R., Huppert, A.: Seasonal dynamics of recurrent epidemics. Nature 446, 533–536 (2007)zbMATHCrossRefGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  1. 1.Institut Universitari de Matemàtica MultidisciplinarUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations