Some results about diagonal operators on Köthe echelon spaces

  • Alberto Rodríguez-ArenasEmail author
Original Paper


Several questions about diagonal operators between Köthe echelon spaces are investigated: (1) The spectrum is characterized in terms of the Köthe matrices defining the spaces, (2) It is characterized when these operators are power bounded, mean ergodic or uniformly mean ergodic, and (3) A description of the topology in the space of diagonal operators induced by the strong topology on the space of all operators is given.


Echelon spaces Diagonal operators Mean ergodic operators Power bounded operators 

Mathematics Subject Classification

47B37 47A10 46A45 



The author would like to express his gratitude to his advisors José Bonet and Enrique Jordá for their guidance and their valuable suggestions and comments.


  1. 1.
    Agathen, S., Bierstedt, K.D., Bonet, J.: Projective limits of weighted (LB)-spaces of continuous functions. Arch. Math. 92, 384–398 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34(2), 401–436 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bennett, G.: Some elementary inequalities. Quart. J. Math. 38, 401–425 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. (1996). MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bierstedt, K.D.: An introduction to locally convex inductive limits, Functional analysis and its applications (Nice, 1986), 35–133, ICPAM Lecture Notes. World Sci. Publishing, Singapore (1988)Google Scholar
  6. 6.
    Bierstedt, K.D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97(2), 159–188 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Approximation Theory. North-Holland Math. Studies 71, 27–91 (1982)Google Scholar
  8. 8.
    Bonet, J., Jordá, E., Rodríguez-Arenas, A.: Mean ergodic multiplication operators on weighted spaces of continuous functions. Mediterr. J. Math 15, 108 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Crofts, G.: Concerning perfect Fréchet spaces and transformations. Math. Ann. 182, 67–76 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kellogg, C.N.: An extension of the Hausdorff–Young theorem. Michig. Math. J. 18, 121–127 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)zbMATHCrossRefGoogle Scholar
  12. 12.
    Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  13. 13.
    Vasilescu, F.H.: Analytic Functional Calculus and Spectral Decompositions. D. Reidel Publ. Co., Dordrecht (1982)zbMATHGoogle Scholar
  14. 14.
    Wengenroth, J.: Derived Functors in Functional Analysis. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Yosida, K.: Functional Analysis. Springer, Berlin (1980)zbMATHGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y Aplicada IUMPAUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations