Advertisement

Generating functions of binary products of k-Fibonacci and orthogonal polynomials

  • Ali BoussayoudEmail author
  • Souhila Boughaba
  • Mohamed Kerada
  • Serkan Araci
  • Mehmet Acikgoz
Original Paper

Abstract

In this paper, we introduce a new operator in order to derive some new symmetric properties of k-Fibonacci and k-Pell numbers and Tchebychev polynomials of first and second kind. By making use of the new operator defined in this paper, we give some new generating functions for k-Fibonacci and k-Pell numbers and Fibonacci polynomials.

Keywords

Symmetric functions Generating functions k-Fibonacci numbers k-Pell numbers 

Mathematics Subject Classification

05E05 11B39 

Notes

References

  1. 1.
    Pintér, A., Srivastava, H.M.: Generating functions of the incomplete Fibonacci and Lucas numbers. Rend. Circ. Mat. Palermo 48, 591–596 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Djordjevic, G.B.: Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers. Fibonacci Q. 42, 106–113 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Djordjevic, G.B., Srivastava, H.M.: Incomplete generalized Jacobsthal and Jacobsthal–Lucas numbers. Math. Comput. Model. 42, 1049–1056 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Tasci, D., Cetin Firengiz, M.: Incomplete Fibonacci and Lucas \(p\)-numbers. Math. Comput. Model. 52, 1763–1770 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Falcon, S., Plaza, A.: On the Fibonacci \(k\)-numbers. Chaos Sulut. Fract. 32, 1615–1624 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Catarino, P.: On some identities and generating functions for \(k\)-Pell numbers. Int. J. Math. Anal. 7, 1877–1884 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boussayoud, A.: On some identities and generating functions for Pell–Lucas numbers. Online J. Anal. Comb. 12, 1–10 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Boussayoud, A., kerada, M., Boulyer, M.: A simple and accurate method for determination of some generalized sequence of numbers. Int. J. Pure Appl. Math. 108, 503–511 (2016)Google Scholar
  9. 9.
    Boussayoud, A., Sahali, R.: The application of the operator \(L_{b_{1}b_{2}}^{-k}\) in the series \(\sum _{j=0}^{+\infty }a_{j}b_{1}^{j}z^{j}\). J. Adv. Res. Appl. Math. 7, 68–75 (2015)MathSciNetGoogle Scholar
  10. 10.
    Abderrezzak, A.: Généralisation de la transformation d’Euler d’une série formelle. Adv. Math. 103, 180–195 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Abderrezzak, A.: Généralisation d’identité s de Carlitz. Howard et Lehmer. Aequ. Math. 49, 36–46 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomias. Oxford University Press, Oxford (1979)Google Scholar
  13. 13.
    Boussayoud, A., Harrouche, N.: Complete symmetric functions and \(k\)-Fibonacci numbers. Commun. Appl. Anal. 20, 457–465 (2016)zbMATHGoogle Scholar
  14. 14.
    Boussayoud, A., Kerada, M., Araci, S.: Symmetric functions of the \(k\)-Fibonacci and \(k\)-Lucas numbers. Int. J. Adv. Appl. Sci. (accepted)Google Scholar
  15. 15.
    Foata, D., Han, G-N.: Nombres de Fibonacci et Polynômes Orthog onaux. In: Leonardo Fibonacci : il tempo, le opere, l’eredità scientifica, pp. 179–200 (1994)Google Scholar
  16. 16.
    Boussayoud, A., Kerada, M., Harrouche, N.: On the \(k\)-Lucas numbers and Lucas Polynomials. Turk. J. Anal. Numb. 5, 121–125 (2017)CrossRefGoogle Scholar
  17. 17.
    Boussayoud, A., Kerada, M., Sahali, R.: Symmetrizing operations on some orthogonal polynomails. Int. Electron. J. Pure Appl. Math. 9, 191–199 (2015)MathSciNetGoogle Scholar
  18. 18.
    Boussayoud, A., Kerada, M.: Symmetric and generating functions. Int. Electron. J. Pure Appl. Math. 7, 195–203 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Boussayoud, A., Kerada, M., Sahali, R., Rouibah, W.: Some applications on generating functions. J. Concr. Appl. Math. 12, 321–330 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Horadam, A.F., Mahon, J.M.: Pell and Pell–Lucas polynomials. Fibonacci Q. 23, 7–20 (1985)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Horadam, A.F.: Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J. 32, 437–446 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bolat, C., Kose, H.: On the properties of \(k\)-Fibonacci numbers. Int. J. Contemp. Math. Sci. 5, 1097–1105 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kruchinin, D.V., Kruchinin, V.V.: Application of a composition of generating functions for obtaining explicit formulas of polynomials. J. Math. Anal. Appl. 404, 161–171 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mezo, I.: Several generating functions for second-order recurrence sequences. J. Integer Seq. 12, 1–16 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kilic, E.: Sums of the squares of terms of the sequence \(\{ U_{n} \} \). Proc. Indian Acad. Sci. Math. Sci. 118, 27–41 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Araci, S.: Novel identities involving Genocchi numbers and polynomials arising from applications of umbral calculus. Appl. Math. Comput. 233, 599–607 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Falcon, S.: On the sequences of products of two \(k\)-Fibonacci numbers. Am. Rev. Math. Stat. 2, 111–120 (2014)Google Scholar
  28. 28.
    Falcon, S., Plaza, A.: On \(k\)-Fibonacci sequences and polynomials and their derivatives. Chaos Sulut. Fract. 39, 1005–1019 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Falcon, S., Plaza, A.: The \(k\)- Fibonacci sequence and the Pascal 2-triangle. Chaos Sulut. Fract. 33, 38–49 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Royal Academy of Sciences, Madrid 2019

Authors and Affiliations

  • Ali Boussayoud
    • 1
    Email author
  • Souhila Boughaba
    • 1
  • Mohamed Kerada
    • 1
  • Serkan Araci
    • 2
  • Mehmet Acikgoz
    • 3
  1. 1.LMAM Laboratory, Department of MathematicsMohamed Seddik Ben Yahia UniversityJijelAlgeria
  2. 2.Department of Economics, Faculty of Economics, Administrative and Social SciencesHasan Kalyoncu UniversityGaziantepTurkey
  3. 3.Department of Mathematics, Faculty of Arts and ScienceUniversity of GaziantepGaziantepTurkey

Personalised recommendations