Degenerate central Bell numbers and polynomials
Original Paper
First Online:
- 18 Downloads
Abstract
Here we study the degenerate central Bell numbers and polynomials as a degenerate version of the recently introduced central Bell numbers and polynomials, which are motivated by Zhang’s work ‘Some identities involving the Euler and the central factorial numbers’ (Zhang in Fibonacci Quart 36(2):154–157, 1998) and we derive some properties, identities, and recurrence relations for these numbers and polynomials. In particular, we find various expressions for the degenerate central Bell numbers and polynomials.
Keywords
Central factorial numbers Bell numbers Degenerate central Bell polynomialsMathematics Subject Classification
11B68 11B73 11B83 05A68Notes
References
- 1.Bouroubi, S., Abbas, M.: New identities for Bell’s polynomials. New approaches. Rostock Math. Kolloq. 61, 49–55 (2006)MathSciNetzbMATHGoogle Scholar
- 2.Carlitz, L.: Some remarks on the Bell numbers. Fibonacci Quart. 18(1), 66–73 (1980)MathSciNetzbMATHGoogle Scholar
- 3.Carlitz, L., Riordan, J.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15, 51–88 (1979)MathSciNetzbMATHGoogle Scholar
- 4.Comtet, L.: Advanced Combinatorics: the art of finite and infinite expansions (translated from the French by J. W. Nienhuys), Revised and enlarged edition. D. Reidel Publishing Company, Dordrecht and Boston (1974)Google Scholar
- 5.Kim, D.S., Kim, T.: On degenerate Bell numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 111(2), 435–446 (2017)Google Scholar
- 6.Kim, D.S., Kim, T.: Some identities of Bell polynomials. Sci. China Math. 58(10), 2095–2104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Kim, D.S., Kwon, J., Dolgy, D.V., Kim, T.: On central Fubini polynomials associated with central factorial numbers of the second kind. Proc. Jangjeon Math. Soc. 21(4), 589–598 (2018)Google Scholar
- 8.Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 20(3), 319–331 (2017)MathSciNetzbMATHGoogle Scholar
- 9.Kim, T.: Degenerate complete Bell polynomials and numbers. Proc. Jangjeon Math. Soc. 20(4), 533–543 (2017)MathSciNetzbMATHGoogle Scholar
- 10.Kim, T.: A note on central factorial numbers. Proc. Jangjeon. Math. Soc. 21(4), 575–588 (2018)Google Scholar
- 11.Kim, T., Kim, D.S.: Degenerate central factorial numbers of the second kind (communicated)Google Scholar
- 12.Kim, T., Kim, D.S.: A note on central Bell numbers and polynomials, Russ. J. Math. Phys. 26 (2019) (in press)Google Scholar
- 13.Kim, T., Kim, D.S.: Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. (2018). https://doi.org/10.1007/s11425-018-9338-5
- 14.Kim, T., Kim, D.S., Dolgy, D.V.: On partially degenerate Bell numbers and polynomials. Proc. Jangjeon Math. Soc. 20(3), 337–315 (2017)MathSciNetzbMATHGoogle Scholar
- 15.Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Kolbig, K.S.: The complete Bell polynomials for certain arguments in terms of Stirling numbers of the first kind. J. Comput. Appl. Math. 51(1), 113–116 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Zhang, W.: Some identities involving the Euler and the central factorial numbers. Fibonacci Quart. 36(2), 154–157 (1998)MathSciNetzbMATHGoogle Scholar
Copyright information
© The Royal Academy of Sciences, Madrid 2019