Advertisement

Mixing multiplication operators

  • Dumitru PopaEmail author
Original Paper
  • 73 Downloads

Abstract

We give the necessary and/or sufficient conditions for the multiplication operators between two vector valued sequence spaces to be mixing. As a consequence of some general results we find the necessary and sufficient condition for the multiplication operator \(M_{\mathcal {V}}:c_{0}\left( \mathcal {X}\right) \rightarrow c_{0}\left( \mathcal {Y}\right) \) (respectively \(M_{\mathcal {V}}:c_{0}\left( \mathcal {X}\right) \rightarrow l_{p}\left( \mathcal {Y}\right) \)) to be \(\left( s,1\right) \)-mixing, where \( M_{\mathcal {V}}\left( \left( x_{n}\right) _{n\in \mathbb {N}}\right) =\left( V_{n}\left( x_{n}\right) \right) _{n\in \mathbb {N}}\).

Keywords

p-Summing linear operators Mixing linear operators Multiplication operator Vector valued Banach sequence spaces 

Mathematics Subject Classification

Primary 47B10 47L20 Secondary 46B45 46A45 

References

  1. 1.
    Albanese, A., Bonet, J.: Fréchet spaces with no infinite-dimensional Banach quotients. J. Math. Anal. Appl. 387(2), 556–567 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Badea, G., Popa, D.: Summing and dominated operators on a Cartesian product of \(c_{0}\left( \cal{X}\right) \) spaces. J. Korean Math. Soc. 54(3), 967–986 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Badea, G., Popa, D.: The summing nature of the multiplication operator from \(l_{p}\left({\cal{X}}\right)\) into \(c_{0}\left({\cal{Y}}\right)\). Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2017).  https://doi.org/10.1007/s13398-016-0370-7
  4. 4.
    Bonet, J., Dierolf, S.: Fréchet spaces of Moscatelli type. Rev. Mat. Univ. Complut. Madr. 2(Suppl.), 77–92 (1989)zbMATHGoogle Scholar
  5. 5.
    Cui, Y., Hudzik, H., Płuciennik, R.: Weak orthogonality and weak property \(\left( \beta \right) \) in some Banach sequence spaces. Czechoslov. Math. J. 49(2), 303–316 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematical Studies, vol. 176 (1993)Google Scholar
  7. 7.
    Frerick, L.: On vector-valued sequence spaces. Note di Mat. 14(1), 1–43 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hudzik, H., Kolwicz, P.: On property \(\left( \beta \right) \) of Rolewicz in Köthe–Bochner sequence spaces. Stud. Math. 162(3), 195–212 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Köthe, G.: Topological vector spaces. I, Translated from the German by D. J. H. Garling, Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer-Verlag New York Inc., New York (1969)Google Scholar
  10. 10.
    Maurey, B.: Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp. Soc. Math. Fr. Astèrisque 11 (1974)Google Scholar
  11. 11.
    Nahoum, A.: Applications radonifiantes dans l’espace des séries convergentes. I: Le théorème de Menchov. Sémin. Maurey-Schwartz 1972–1973, Exposé XXIV (1973). http://www.numdam.org
  12. 12.
    Pietsch, A.: Operator Ideals. Veb Deutscher Verlag der Wiss, Berlin (1978) [North Holland (1980)]Google Scholar
  13. 13.
    Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge University Press, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  1. 1.Department of MathematicsOvidius University of ConstantaConstanţaRomania

Personalised recommendations