Advertisement

Novel Lyapunov-type inequalities for sequential fractional boundary value problems

  • Rui A. C. FerreiraEmail author
Original Paper

Abstract

In this work we derive a Lyapunov-type inequality for a what may be called “sequential fractional right-focal boundary value problem”. A bound for the possible eigenvalues of our problem is also presented.

Keywords

Lyapunov inequality Fractional derivatives Focal boundary conditions Eigenvalues 

Mathematics Subject Classification

Primary 34A08 26D10 34L15 

References

  1. 1.
    Cabrera, I., Sadarangani, K., Samet, B.: Hartman–Wintner-type inequalities for a class of nonlocal fractional boundary value problems. Math. Methods Appl. Sci. 40(1), 129–136 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dhar, S., Kong, Q., McCabe, M.: Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 43 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dragomir, S.S., Agarwal, R.P., Barnett, N.S.: Inequalities for beta and gamma functions via some classical and new integral inequalities. J. Inequal. Appl. 5(2), 103–165 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ferreira, R.A.C.: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16(4), 978–984 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ferreira, R.A.C.: On a Lyapunov-type inequality and the zeros of a certain Mittag–Leffler function. J. Math. Anal. Appl. 412(2), 1058–1063 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ferreira, R.A.C.: Lyapunov-type inequalities for some sequential fractional boundary value problems. Adv. Dyn. Syst. Appl. 11(1), 33–43 (2016)MathSciNetGoogle Scholar
  8. 8.
    Ferreira, R.A.C.: Lyapunov-type inequality for an anti-periodic fractional boundary value problem. Fract. Calc. Appl. Anal. 20(1), 284–291 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jleli, M., Samet, B.: Lyapunov-type inequalities for fractional boundary-value problems. Electron. J. Differ. Equ. 2015, 88 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jleli, M., Samet, B.: Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 18(2), 443–451 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Jleli, M., Kirane, M., Samet, B.: Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 66, 30–39 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ma, D.: A generalized Lyapunov inequality for a higher-order fractional boundary value problem. J. Inequal. Appl. 2016, 261 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  14. 14.
    Rong, J., Bai, C.: Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv. Differ. Equ. 2015, 82 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  1. 1.Grupo Física-Matemática, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations