Approximation degree of a Kantorovich variant of Stancu operators based on Polya–Eggenberger distribution

  • P. N. Agrawal
  • Ana Maria AcuEmail author
  • Manjari Sidharth
Original Paper


This paper is a continuation of the work done by Deo et al. (Appl. Math. Comput. 273, 281–289, 2016), in which the authors have established some approximation properties of the Stancu–Kantorovich operators based on Pólya–Eggenberger distribution. We obtain some direct results for these operators by means of the Lipschitz class function, the modulus of continuity and the weighted space. Also, we study an approximation theorem with the aid of the unified Ditzian–Totik modulus of smoothness \(\omega _{\phi ^{\tau }}(f;t),\,\,\,0\le \tau \le 1\) and the rate of convergence of the operators for the functions having a derivative which is locally of bounded variation on \([0,\infty )\).


Pólya–Eggenberger distribution Lipschitz class function Ditzian–Totik modulus of smoothness Bounded variation 

Mathematics Subject Classification

41A10 41A25 41A36 



The work of the second author was financed from Lucian Blaga University of Sibiu research Grants LBUS-IRG-2017-03 and the third author is thankful to “The Ministry of Human Resource and Development”, India for the financial support to carry out the above work.


  1. 1.
    Acar, T.: Asymptotic formulas for generalized Szász–Mirakyan operators. Appl. Math. Comput. 263, 223–239 (2015)zbMATHGoogle Scholar
  2. 2.
    Ulusoy, G., Acar, T.: q-Voronovskaya type theorems for q-Baskakov operators. Math. Methods Appl. Sci. 39(12), 3391–3401 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modifications of (p, q)-Baskakov operators. J. Inequalities Appl. 98, 2016 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Acar, T., Aral, A.: Weighted approximation by new Bernstein–Chlodowsky–Gadjiev. Filomat 27(2), 371–380 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Acar, T., Gupta, V., Aral, A.: Rate of convergence for genaeralized Szász operators. Bull. Math. Sci. 1(1), 99–113 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Acar, T., Aral, A., Raşa, I.: Modified Bernstein–Durrmeyer operators. Gen. Math. 22(1), 27–41 (2014)Google Scholar
  7. 7.
    Acar, T., Ulusoy, G.: Approximation by modified Szász–Durrmeyer operators. Period. Math. Hungar. 72(1), 64–75 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aral, A., Inoan, D., Raşa, I.: On the generalized Szász–Mirakyan operator. Results Math. 65, 441–452 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Baskakov, V.A.: A sequence of linear positive operators in the space of continuous functions. Dokl. Acad. Nauk. SSSR 113, 249–251 (1957)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cárdenas-Morales, D., Garrancho, P., Raşa, I.: Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 62, 158–163 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deo, N., Dhamija, M., Micăuş, D.: Stancu–Kantorovich operators based on inverse Pólya–Eggenberger distribution. Appl. Math. Comput. 273, 281–289 (2016)MathSciNetGoogle Scholar
  12. 12.
    Dhamija, M., Deo, N.: Jain–Durrmeyer operators associated with the inverse Pólya–Eggenberger distribution. Appl. Math. Comput. 286, 15–22 (2016)MathSciNetGoogle Scholar
  13. 13.
    Ditzian, Z., Totik, V.: Moduli of smoothness, Volume 9 of Springer Series in Computational Mathematic. Springer, New York (1987)Google Scholar
  14. 14.
    Gadjiev, A.D.: On P. P. Korovkin type theorems. Math. Zametki 20(5), 781–786 (1976)Google Scholar
  15. 15.
    Guo, S., Qi, Q., Liu, G.: The central approximation theorems for Baskakov–Bézier operators. J. Approx. Theory 147, 112–124 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gupta, V., Aral, A.: Convergence of the \(q\)-analogue of Szász type operators based on Charlier polynomials. Appl. Math. Comput. 216(2), 374–380 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gupta, M.K., Beniwal, M.S., Goel, P.: Rate of convergence of Szász–Mirakyan–Durrmeyer operators with derivatives of bounded variation. Appl. Math. Comput. 199(2), 828–832 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ispir, N.: Rate of convergence of generalized rational type Baskakov operators. Math. Comput. Model. 46(5–6), 625–631 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kajla, A., Acu, A.M., Agrawal, P.N.: Baskakov–Szász-type operators based on inverse Pólya–Eggenberger distribution. Ann. Funct. Anal. 8(1), 106–123 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Karsli, H.: Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation. Math. Comput. Model. 45(5–6), 617–624 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Neer, T., Acu, A.M., Agrawal, P.N.: Bézier variant of genuine-Durrmeyer type operators based on Pólya distribution. Carpathian J. Math. 33(1), 73–86 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Özarslan, M.A., Duman, O.: Local approximation behavior of modified SMK operators. Miskolc Math. Notes 11(1), 87–99 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Özarslan, M.A., Duman, O., Kaanoǧlu, C.: Rates of convergence of certain King-type operators for functions with derivatives of bounded variation. Math. Comput. Model. 52(1–2), 334–345 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stancu, D.D.: Two classes of positive linear operators. Anal. Univ. Timişoara, Ser. Matem 8, 213–220 (1970)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Yüksel, I., Ispir, N.: Weighted approximation by a certain family of summation integral-type operators. Comput. Math. Appl. 52(10–11), 1463–1470 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Mathematics and InformaticsLucian Blaga University of SibiuSibiuRomania

Personalised recommendations