Advertisement

On certain p-valent close-to-convex functions of order \(\beta \) and type \(\alpha \)

  • Jin-Lin LiuEmail author
Original Paper
  • 67 Downloads

Abstract

A new class \(K_p(\alpha ,\beta )\) consisting of the functions which are p-valent close-to-convex of order \(\beta \) and type \(\alpha \) is introduced. The object of the present paper is to derive some sufficient conditions for functions to be in the class \(K_p(\alpha ,\beta )\).

Keywords

Close-to-convex function p-Valent function Subordination 

Mathematics Subject Classification

Primary 30C45 30C80 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 11571299) and Natural Science Foundation of Jiangsu Province (Grant No. BK20151304).

References

  1. 1.
    Baricz, Á., Szász, R.: Close-to-convexity of some special functions and their derivatives. Bull. Malays. Math. Sci. Soc. 39, 427–437 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clunie, J., Pommerenke, C.: On the coefficients of close-to-convex univalent functions. J. Lond. Math. Soc. 41, 161–165 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dorff, M., Naraniecka, I., Szynal, J.: Doubly close-to-convex functions. J. Math. Anal. Appl. 290, 55–62 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duren, P.L.: An arclength problem for close-to-convex functions. J. Lond. Math. Soc. 39, 757–761 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kaplan, W.: Close-to-convex schlicht functions. Mich. Math. J. 1, 169–185 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Leung, Y.J.: Robertson’s conjecture on the coefficients of close-to-convex functions. Proc. Am. Math. Soc. 76, 89–94 (1979)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Livingston, A.E.: \(P\)-valent close-to-convex functions. Trans. Am. Math. Soc. 115, 161–179 (1965)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Noor, K.I., Arif, M., Ul-Haq, W.: On \(k\)-uniformly close-to-convex functions of complex order. Appl. Math. Comput. 215, 629–635 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Owa, S., Nunokawa, M., Saitoh, H., Srivastava, H.M.: Close-to-convexity, starlikeness, and convexity of certain analytic functions. Appl. Math. Lett. 15, 63–69 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Patel, J., Cho, N.E.: On certain sufficient conditions for close-to-convexity. Appl. Math. Comput. 187, 369–378 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Polatoglu, Y., Kahramaner, Y., Aydogan, M.: Harmonic mappings for which co-analytic part is a close-to-convex function of order \(b\). J. Inequal. Appl. 2015, 18 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Reade, M.O.: On close-to-convex univalent functions. Mich. Math. J. 3, 59–62 (1955–1956)Google Scholar
  13. 13.
    Srivastava, H.M., Khan, M.R., Arif, M.: Some subclasses of close-to-convex mappings associated with conic regions. Appl. Math. Comput. 285, 94–102 (2016)MathSciNetGoogle Scholar
  14. 14.
    Srivastava, H.M, Li, S.H. Tang, H.: Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok–Srivastava operator. Bull. Math. Anal. Appl. 1, 49–63 (2009) (electronic) Google Scholar
  15. 15.
    Srivastava, H.M., Mishra, A.K., Das, M.K.: The Fekete–Szegö problem for a subclass of close-to-convex functions. Complex Var. Theory Appl. 44, 145–163 (2001)zbMATHGoogle Scholar
  16. 16.
    Srivastava, H.M., Raducanu, D., Salagean, G.S.: A new class of generalized close-to-starlike functions defined by the Srivastava–Attiya operator. Acta Math. Sin. (Engl. Ser.) 29, 833–840 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Suffridge, T.J.: Some remarks on convex maps of the unit disk. Duke Math. J. 37, 775–777 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, Z.-G., Gao, C.-Y., Yuan, S.-M.: On certain subclasses of close-to-convex and quasi-convex functions with respect to \(k\)-symmetric points. J. Math. Anal. Appl. 322, 97–106 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wilken, D.R.: The integral means of close-to-convex functions. Mich. Math. J. 19, 377–379 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xu, Q., Liu, T., Liu, X.: On a subclass of close-to-convex mappings. Complex Anal. Oper. Theory 9, 275–286 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xu, Q., Srivastava, H.M., Li, Z.: A certain subclass of analytic and close-to-convex functions. Appl. Math. Lett. 24, 396–401 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xu, N., Yang, D.-G.: An application of differential subordinations and some criteria for starlikeness. Indian J. Pure Appl. Math. 36, 541–556 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Xu, N., Yang, D.-G., Owa, S.: On strongly starlike multivalent functions of order \(\beta \) and type \(\alpha \). Math. Nachr. 283, 1207–1218 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yang, D.-G., Liu, J.-L.: Argument inequalities for certain analytic functions. Math. Comput. Model. 52, 1812–1821 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ye, Z.: On the successive coefficients of close-to-convex functions. J. Math. Anal. Appl. 283, 689–695 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l. 2017

Authors and Affiliations

  1. 1.Department of MathematicsYangzhou UniversityYangzhouChina

Personalised recommendations