Advertisement

Plasma-Assisted Synthesis of Bicrystalline ZnS Nanobelts with Enhanced Photocatalytic Ability

  • 23 Accesses

Abstract

ZnS nanobelts have been synthesized by a reaction of Zn and S powders using the simple arc discharge method. The products were characterized using X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, as well as energy-dispersive X-ray spectrometer. The results reveal that the ZnS nanobelts exhibit bicrystalline nanostructure. The roles of ion bombardment and plasma species in the growth of bicrystalline ZnS nanobelts are discussed. The ZnS nanobelts exhibit strong emission peaked at 516 nm under a 373 nm UV light excitation and excellent photocatalytic ability for degradation of methylene blue. This work represents a new strategy to synthesize bicrystalline nanostructures for design of optoelectronic nanodevices and photocatalysts.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chong, M.N., Jin, B., Chow, C.W.K., Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)

  2. 2.

    Martinez-Huitle, C.A., Brillas, E.: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B Environ. 87, 105–145 (2009)

  3. 3.

    Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

  4. 4.

    Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., Gernjak, W.: Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59 (2009)

  5. 5.

    Lee, G.J., Wu, J.J.: Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technol. 318, 8–22 (2017)

  6. 6.

    Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Yoshio, B., Golberg, D.: ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011)

  7. 7.

    Xiong, S.L., Xi, B.J., Wang, C.M., Xu, D.C., Feng, X.M., Zhu, Z.C., Qian, Y.T.: Tunable synthesis of various Wurtzite ZnS architectural structures and their photocaltalytic properties. Adv. Funct. Mater. 17, 2728–2738 (2007)

  8. 8.

    Liu, J., Guo, Z.P., Wang, W.J., Huang, Q.S., Zhu, K.X., Chen, X.L.: Heterogeneous ZnS hollow urchin-like hierarchical nanostructures and their structure-enhanced photocatalytic properties. Nanoscale 3, 1470–1473 (2011)

  9. 9.

    Jothibas, M., Manoharan, C., Jeyakumar, S.J., Praveen, P., Punithavathy, I.K., Richard, J.P.: Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018)

  10. 10.

    Pouretedal, H.R., Norozi, A., Keshavarz, M.H., Semnani, A.: Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162, 674–681 (2009)

  11. 11.

    Chauhan, R., Kumar, A., Chaudhary, R.P.: Photocatalytic degradation of methylene blue with Cu doped ZnS nanoparticles. J. Lumin. 145, 6–12 (2014)

  12. 12.

    Li, H.J., Zhou, Y., Tu, W.G., Ye, J.H., Zou, Z.G.: State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015)

  13. 13.

    Xie, Y.P., Yu, Z.B., Liu, G., Ma, X.L., Cheng, H.M.: CdS-mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ. Sci. 7, 1895–1901 (2014)

  14. 14.

    Deka, D.C., Kalita, A., Bardaloi, S., Kalita, M.P.C.: Influence of capping agent on structural, optical and photocatalytic properties of ZnS nanocrystals. J. Lumin. 210, 269–275 (2019)

  15. 15.

    Rajabi, H.R., Farsi, M.: Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicond. Process. 48, 14–22 (2016)

  16. 16.

    Bai, S., Zhang, N., Gao, C., Xiong, Y.J.: Defect engineering in photocatalytic materials. Nano Energy 53, 296–336 (2018)

  17. 17.

    Hao, X.Q., Wang, Y.C., Zhou, J., Cui, Z.W., Wang, Y., Zou, Z.G.: Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B Environ. 221, 302–311 (2018)

  18. 18.

    Liu, M.C., Jing, D.W., Zhou, Z.H., Guo, L.J.: Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 4, 2278 (2013)

  19. 19.

    Zhang, J., Xu, Q., Feng, Z., Li, M., Li, C.: Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 47, 1766–1769 (2008)

  20. 20.

    He, K., Wang, M., Guo, L.J.: Novel-CdS-nanorod with stacking fault structures: preparation and properties of visible-light-driven photocatalytic hydrogen production from water. Chem. Eng. J. 279, 747–756 (2015)

  21. 21.

    Liu, M.C., Wang, L.Z., Lu, G.Q., Yao, X.D., Guo, L.J.: Twins in Cd1 xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 4, 1372–1378 (2011)

  22. 22.

    Yin, B., Huang, X., Mishra, R., Sadtler, B.: Compositionally induced twin defects control the shape of ternary silver halide nanocrystals. Chem. Mater. 29, 1014–1021 (2017)

  23. 23.

    Zhang, X.L., Liu, B.D., Liu, Q.Y., Yang, W.J., Xiong, C.M., Li, J., Jiang, X.: Ultrasensitive and highly selective photodetections of UV—a rays based on individual bicrystalline GaN nanowire. ACS Appl. Mater. Interfaces 9, 2669–2677 (2017)

  24. 24.

    Carim, A.H., Lew, K.K., Redwing, J.M.: Bicrystalline silicon nanowires. Adv. Mater. 13, 1489–1491 (2001)

  25. 25.

    Shen, G.Z., Chen, P.C., Bando, Y., Golberg, D., Zhou, C.W.: Bicrystalline Zn(3)P(2) and Cd(3)P(2) nanobelts and their electronic transport properties. Chem. Mater. 20, 7319–7323 (2008)

  26. 26.

    Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., Hu, J.Q., Golberg, D.: Needlelike bicrystalline GaN nanowires with excellent field emission properties. J. Phys. Chem. B. 109, 17082–17085 (2005)

  27. 27.

    Kar, S., Chaudhuri, S.: Synthesis and optical properties of single and bicrystalline ZnS nanoribbons. Chem. Phys. Lett. 414, 40–46 (2005)

  28. 28.

    Jie, J.S., Zhang, W.J., Jiang, Y., Meng, X.M., Zapien, J.A., Shao, M.W., Lee, S.T.: Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition. Nanotechnology 17, 2913–2917 (2006)

  29. 29.

    Wang, Q.S., Xie, Y.H., Zhang, J., Cong, R.D.: Synthesis, photoluminescence and ferromagnetic properties of pencil-like Y doped AlN microrods. Ceram. Int. 43, 3319–3323 (2017)

  30. 30.

    Zhu, G., Wu, W.Z., Xin, S.Y., Zhang, J., Wang, Q.S.: Plasma-assisted synthesis of ZnSe hollow microspheres with strong red emission. J. Lumin. 206, 33–38 (2019)

  31. 31.

    Ma, L.G., Luo, H., Wang, W., Li, L., Zhang, F.M., Wu, X.S.: Structural and optical properties of the ZnS nanobelts grown on Zn foil via a simple method. Mater. Lett. 139, 364–367 (2015)

  32. 32.

    Kim, J.H., Rho, H., Kim, J., Choi, Y.J., Park, J.G.: Raman spectroscopy of ZnS nanostructures. J. Raman Spectrosc. 43, 906–910 (2012)

  33. 33.

    Fan, X., Zhang, M.L., Shafiq, I., Zhang, W.J., Lee, C.S., Lee, S.T.: Bicrystalline CdS nanoribbons. Cryst. Growth Des. 9, 1375–1377 (2009)

  34. 34.

    Liu, B.D., Bando, Y., Liao, M.Y., Tang, C.C., Mitome, M., Golberg, D.: Bicrystalline ZnS microbelts. Cryst. Growth Des. 9, 2790–2793 (2009)

  35. 35.

    Xu, C.K., Youkey, S., Wu, J.F., Jiao, J.: Electrical behavior of ferromagnetic BiMn-Codoped ZnO bicrystal nanobelts to Pt contacts. J. Phys. Chem. C 111, 12490–12494 (2007)

  36. 36.

    Meng, X.M., Jiang, Y., Liu, J., Lee, C.S.: Synthesis and characterization of ZnS bicrystal nanoribbons. Appl. Phys. Lett. 83, 2244–2246 (2003)

  37. 37.

    Dai, S., Zhao, J., He, M.R., Wu, H., Xie, L., Zhu, J.: New twin structures in GaN nanowires. J. Phys. Chem. C 117, 12895–12901 (2013)

  38. 38.

    Zhang, J., Zhu, H.Y., Wu, X.X., Cui, H., Li, D.M., Jiang, J.R., Gao, C.X., Wang, Q.S., Cui, Q.L.: Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets. Nanoscale 7, 10807–10816 (2015)

  39. 39.

    Yu, J.H., Joo, J., Park, H.M., Baik, S.I., Kim, Y.W., Kim, S.C., Hyeon, T.: Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 (2005)

  40. 40.

    Khaparde, R., Acharya, S.: Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 163, 49–57 (2016)

  41. 41.

    Meng, X.M., Liu, J., Jiang, Y., Chen, W.W., Lee, C.S., Bello, I., Lee, S.T.: Structure- and size-controlled ultrafine ZnS nanowires. Chem. Phys. Lett. 382, 434–438 (2003)

  42. 42.

    Bol, A.A., Meijerink, A.: Long-lived Mn2+ emission in nanocrystalline ZnS: Mn2+. Phys. Rev. B 58, 15997–16000 (1998)

  43. 43.

    Ye, C.H., Fang, X.S., Li, G.H., Zhang, L.D.: Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004)

  44. 44.

    Tsuruoka, T., Liang, C.H., Terabe, K., Hasegawa, T.: Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy. Appl. Phys. Lett. 92, 091908 (2008)

  45. 45.

    Yan, Y.F., Al-Jassim, M.M., Demuth, T.: Energetics and effects of planar defects in CdTe. J. Appl. Phys. 90, 3952–3955 (2001)

  46. 46.

    Wang, X.L., Shi, J.Y., Feng, Z.C., Li, M.R., Li, C.: Visible emission characteristics from different defects of ZnS nanocrystals. Phys. Chem. Chem. Phys. 13, 4715–4723 (2011)

  47. 47.

    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145–157 (2001)

  48. 48.

    Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M., Ye, J.H.: Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

  49. 49.

    Billig, E., Ridout, M.S.: Transmission of electrons and holes across a twin boundary in germanium. Nature 173, 496–497 (1954)

  50. 50.

    Mahvelati-Shamsabadi, T., Goharshadi, E.K.: Photostability and visible-light-driven photoactivity enhancement of hierarchical ZnS nanoparticles: the role of embedment of stable defect sites on the catalyst surface with the assistant of ultrasonic waves. Ultrason. Sonochem. 34, 78–89 (2017)

Download references

Acknowledgements

This study was supported financially by the National Natural Science Foundation of China (Grant No. 11504028) and Liaoning Natural Foundation for Guidance Program (Grant No. 2019-ZD-0490).

Author information

Correspondence to Qiushi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, J., Zhang, W. et al. Plasma-Assisted Synthesis of Bicrystalline ZnS Nanobelts with Enhanced Photocatalytic Ability. Electron. Mater. Lett. (2020). https://doi.org/10.1007/s13391-020-00200-9

Download citation

Keywords

  • Nanocrystalline materials
  • Luminescence
  • Bicrystalline
  • ZnS
  • Photocatalytic degradation