First-Principles Study of Black Phosphorus as Anode Material for Rechargeable Potassium-Ion Batteries

  • Weiwei Yang
  • Yunxiang LuEmail author
  • Chengxi Zhao
  • Honglai Liu
Original Article - Theory, Characterization and Modeling


In two-dimensional materials, black phosphorus has shown excellent performance as electrode materials for lithium- and sodium-ion batteries, due to its thermodynamic stability, layered anisotropic structure, and electrical conductivity. Recently, high capacity anodes based on black phosphorus as an active component for potassium-ion batteries (PIBs) have also been reported. However, in-depth studies are required to clarify the adsorption and diffusion of K ions on black phosphorus and the K–P reaction mechanism. In this work, the surface adsorption, bulk diffusion, and K–P binary phase formation were firstly investigated in detail using first-principle calculations. We found that compared with Li and Na, K has the lowest diffusion energy barrier in the bulk phase (0.182 eV for zigzag type and 2.013 eV for armchair type). Black phosphorus structure irreversibly collapses when the K ion concentration is up to 0.625, and no K3P phase is formed through the electrochemical profiles obtained by calculation of the binary phase alloy structures. Furthermore, the maximum capacitance of black phosphorous for PIBs is calculated to be 864.8 mAh.g−1. This work will help in understanding the mechanism and further improving the performance of K-ion batteries.

Graphic Abstract


K-ion battery Black phosphorus Adsorption and diffusion K–P alloy First-principles calculations 



This work was supported by the National Natural Science Foundation of China (21473054 and 91834301).

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

13391_2019_178_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2154 kb)


  1. 1.
    Thackeray, M.M., Wolverton, C., Isaacs, E.D.: Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)CrossRefGoogle Scholar
  2. 2.
    Rahimi-Eichi, H., Ojha, U., Baronti, F., Chow, M.-Y.: Battery management system: an overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 7, 4–16 (2013)CrossRefGoogle Scholar
  3. 3.
    Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., Rutz, M.: Development of a recycling process for Li-ion batteries. J. Power Sour. 207, 173–182 (2012)CrossRefGoogle Scholar
  4. 4.
    Sun, X., Hao, H., Zhao, F., Liu, Z.: Tracing global lithium flow: a trade-linked material flow analysis. Resour. Conserv. Recycl. 124, 50–61 (2017)CrossRefGoogle Scholar
  5. 5.
    Slater, M.D., Kim, D., Lee, E., Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)CrossRefGoogle Scholar
  6. 6.
    Rankin, D.W.H.: CRC handbook of chemistry and physics, 89th edition, edited by David R. Lide. Crystallogr. Rev. 15, 223–224 (2009)CrossRefGoogle Scholar
  7. 7.
    Cheng, D.-L., Yang, L.-C., Zhu, M.: High-performance anode materials for Na-ion batteries. Rare Met. 37, 167–180 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhang, W., Mao, J., Li, S., Chen, Z., Guo, Z.: Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017)CrossRefGoogle Scholar
  9. 9.
    Brown, A., Rundqvist, S.: Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965)CrossRefGoogle Scholar
  10. 10.
    Cartz, L., Srinivasa, S.R., Riedner, R.J., Jorgensen, J.D., Worlton, T.G.: Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979)CrossRefGoogle Scholar
  11. 11.
    Rodin, A.S., Carvalho, A., Neto, A.H.C.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014)CrossRefGoogle Scholar
  12. 12.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)CrossRefGoogle Scholar
  13. 13.
    Sultana, I., Rahman, M.M., Ramireddy, T., Chen, Y., Glushenkov, A.M.: High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A. 5, 23506–23512 (2017)CrossRefGoogle Scholar
  14. 14.
    Hembram, K.P.S.S., Jung, H., Yeo, B.C., Pai, S.J., Kim, S., Lee, K.-R., Han, S.S.: Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J. Phys. Chem. C 119, 15041–15046 (2015)CrossRefGoogle Scholar
  15. 15.
    Hembram, K.P.S.S., Jung, H., Yeo, B.C., Pai, S.J., Lee, H.J., Lee, K.-R., Han, S.S.: A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Phys. Chem. Chem. Phys. 18, 21391–21397 (2016)CrossRefGoogle Scholar
  16. 16.
    Mayo, M., Griffith, K.J., Pickard, C.J., Morris, A.J.: Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem. Mater. 28, 2011–2021 (2016)CrossRefGoogle Scholar
  17. 17.
    Marbella, L.E., Evans, M.L., Groh, M.F., Nelson, J., Griffith, K.J., Morris, A.J., Grey, C.P.: Sodiation and desodiation via helical phosphorus intermediates in high-capacity anodes for sodium-ion batteries. J. Am. Chem. Soc. 140, 7994–8004 (2018)CrossRefGoogle Scholar
  18. 18.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)CrossRefGoogle Scholar
  19. 19.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999)CrossRefGoogle Scholar
  20. 20.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  21. 21.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  22. 22.
    Ganesh, P., Kim, J., Park, C., Yoon, M., Reboredo, F.A., Kent, P.R.C.: Binding and diffusion of lithium in graphite: quantum monte carlo benchmarks and validation of van der Waals density functional methods. J. Chem. Theory Comput. 10, 5318–5323 (2014)CrossRefGoogle Scholar
  23. 23.
    Kou, L., Frauenheim, T., Chen, C.: Phosphorene as a superior gas sensor: selective adsorption and distinct IV response. J. Phys. Chem. Lett. 5, 2675–2681 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014)CrossRefGoogle Scholar
  25. 25.
    Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)CrossRefGoogle Scholar
  26. 26.
    Sibari, A., Marjaoui, A., Lakhal, M., Kerrami, Z., Kara, A., Benaissa, M., Ennaoui, A., Hamedoun, M., Benyoussef, A., Mounkachi, O.: Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol. Energy Mater. Sol. Cells 180, 253–257 (2018)CrossRefGoogle Scholar
  27. 27.
    Qiao, L., Qu, C.Q., Zhang, H.Z., Yu, S.S., Hu, X.Y., Zhang, X.M., Bi, D.M., Jiang, Q., Zheng, W.T.: Effects of alkali metal adsorption on the structural and field emission properties of graphene. Diam. Relat. Mater. 19, 1377–1381 (2010)CrossRefGoogle Scholar
  28. 28.
    Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014)CrossRefGoogle Scholar
  29. 29.
    Fan, X., Zheng, W.T., Kuo, J.-L., Singh, D.J.: Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 7793–7797 (2013)CrossRefGoogle Scholar
  30. 30.
    Karmakar, S., Chowdhury, C., Datta, A.: Two-dimensional group IV monochalcogenides: anode materials for Li-ion batteries. J. Phys. Chem. C 120, 14522–14530 (2016)CrossRefGoogle Scholar
  31. 31.
    Lee, E., Persson, K.A.: Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12, 4624–4628 (2012)CrossRefGoogle Scholar
  32. 32.
    Sangster, J.M.: K-P (Potassium-Phosphorus) System. J. Phase Equilibria Diffus. 31, 68–72 (2010)CrossRefGoogle Scholar
  33. 33.
    Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013)CrossRefGoogle Scholar
  34. 34.
    Lee, H.W., Jung, H., Yeo, B.C., Kim, D., Han, S.S.: Atomistic sodiation mechanism of a phosphorene/graphene heterostructure for sodium-ion batteries determined by first-principles calculations. J. Phys. Chem. C 122, 20653–20660 (2018)CrossRefGoogle Scholar
  35. 35.
    Nobuhara, K., Nakayama, H., Nose, M., Nakanishi, S., Iba, H.: First-principles study of alkali metal-graphite intercalation compounds. J. Power Sour. 243, 585–587 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials, Department of Chemistry, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations