Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells

  • Bumjin Gil
  • Alan Jiwan Yun
  • Younghyun Lee
  • Jinhyun Kim
  • Byungho Lee
  • Byungwoo ParkEmail author
Review Paper


Organic–inorganic hybrid perovskite solar cells (PSCs) are considered as one of the most promising emerging photovoltaics with outstanding performance. However, the commonly used organic hole transport materials (HTMs) suffer from heat-, light-, and bias-induced degradation along with defect diffusion and hygroscopic properties. To resolve these issues in conventional HTMs, inorganic materials with superior chemical stability, high carrier mobility, and low cost have been developed, demonstrating improved stability under rigorous conditions such as high temperature and long-term illumination. Understanding the properties of alternative inorganic HTMs is of prominent importance to realize more stable and efficient PSCs. This review summarizes the recent progresses in inorganic HTMs adopted in various device architectures, with their remarkable achievements in efficiency and long-term stability.

Graphic Abstract


Organometal halide perovskite Hole transporting materials Inorganic HTM Stability 



This work is supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20183010014470).


  1. 1.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  2. 2.
    Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P.C., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016)CrossRefGoogle Scholar
  3. 3.
    Duong, T., Wu, Y., Shen, H., Peng, J., Fu, X., Jacobs, D., Wang, E.-C., Kho, T.C., Fong, K.C., Stocks, M., Franklin, E., Blakers, A., Zin, N., McIntosh, K., Li, W., Cheng, Y.-B., White, T.P., Weber, K., Catchpole, K.: Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017)CrossRefGoogle Scholar
  4. 4.
    Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Zhou, H., Hu, J., Huang, B., Sun, M., Dong, B., Zheng, G., Huang, Y., Chen, Y., Li, L., Xu, Z., Li, N., Liu, Z., Chen, Q., Sun, L.-D., Yan, C.-H.: A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265 (2019)CrossRefGoogle Scholar
  6. 6.
    Kim, J., Hwang, T., Lee, B., Lee, S., Park, K., Park, H.H., Park, B.: An aromatic diamine molecule as the A-site solute for highly durable and efficient perovskite solar cells. Small Methods 3, 1800361 (2019)CrossRefGoogle Scholar
  7. 7.
    Hwang, T., Lee, B., Kim, J., Lee, S., Gil, B., Yun, A.-J., Park, B.: From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv. Mater. 30, 1704208 (2018)CrossRefGoogle Scholar
  8. 8.
    Lei, B., Eze, V.O., Mori, T.: High-performance CH3NH3PbI3 perovskite solar cells fabricated under ambient conditions with high relative humidity. Jpn. J. Appl. Phys. 54, 100305 (2015)CrossRefGoogle Scholar
  9. 9.
    D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)CrossRefGoogle Scholar
  10. 10.
    Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582 (2015)CrossRefGoogle Scholar
  11. 11.
    Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 6156 (2013)CrossRefGoogle Scholar
  12. 12.
    Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 6225 (2015)Google Scholar
  13. 13.
    Jo, J.W., Yoo, Y., Jeong, T., Ahn, S., Ko, M.J.: Low-temperature processable charge transporting materials for the flexible perovskite solar cells. Electron. Mater. Lett. 14, 657 (2018)CrossRefGoogle Scholar
  14. 14.
    Sheikh, A.K., Abdur, R., Singh, S., Kim, J.-H., Min, K.-S., Kim, J., Lee, J.: Effects of chlorine contents on perovskite solar cell structure formed on CdS electron transport layer probed by Rutherford backscattering. Electron. Mater. Lett. 14, 700 (2018)CrossRefGoogle Scholar
  15. 15.
    Yun, A.J., Kim, J., Hwang, T., Park, B.: Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 3554 (2019)CrossRefGoogle Scholar
  16. 16.
    Hwang, S.T., Hwang, T., Lee, S., Gil, B., Park, B.: Selective rear contact for Ga0.5In0.5P- and GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 182, 348 (2018)CrossRefGoogle Scholar
  17. 17.
    Lee, S., Flanagan, J.C., Lee, B., Hwang, T., Kim, J., Gil, B., Shim, M., Park, B.: Route to improving photovoltaics based on CdSe/CdSexTe1−x type-II heterojunction nanorods: the effect of morphology and cosensitization on carrier recombination and transport. ACS Appl. Mater. Interfaces 9, 31931 (2017)CrossRefGoogle Scholar
  18. 18.
    Lee, B., Lee, S., Cho, D., Kim, J., Hwang, T., Kim, K.H., Hong, S., Moon, T., Park, B.: Evaluating the optoelectronic quality of hybrid perovskites by conductive atomic force microscopy with noise spectroscopy. ACS Appl. Mater. Interfaces 8, 30985 (2017)CrossRefGoogle Scholar
  19. 19.
    Hwang, S.-T., Kim, S., Cheun, H., Lee, H., Lee, B., Hwang, T., Lee, S., Yoon, W., Lee, H.-M., Park, B.: Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 155, 264 (2016)CrossRefGoogle Scholar
  20. 20.
    Lee, S., Flanagan, J.C., Kang, J., Kim, J., Shim, M., Park, B.: Integration of CdSe/CdSexTe1−x type-II heterojunction nanorods into hierarchically porous TiO2 electrode for efficient solar energy conversion. Sci. Rep. 5, 17412 (2015)CrossRefGoogle Scholar
  21. 21.
    Lee, W., Kang, S., Hwang, T., Kim, K., Woo, H., Lee, B., Kim, J., Kim, J., Park, B.: Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells. Electrochim. Acta 167, 194 (2015)CrossRefGoogle Scholar
  22. 22.
    Lee, S.-Y., Hwang, T., Lee, S., Lee, W., Lee, B., Kim, J., Kim, S., Lee, H., Lee, H.-M., Park, B.: Nanoroughness control of Al-doped ZnO for high efficiency Si thin-film solar cells. Curr. Appl. Phys. 15, 1353 (2015)CrossRefGoogle Scholar
  23. 23.
    Moon, T., Shin, G.S., Park, B.: Recent advances in the transparent conducting ZnO for thin-film Si solar cells. Electron. Mater. Lett. 11, 917 (2015)CrossRefGoogle Scholar
  24. 24.
    Choi, H., Nahm, C., Kim, J., Kim, C., Kang, S., Hwang, T., Park, B.: Review paper: toward highly efficient quantum-dot- and dye-sensitized solar cells. Curr. Appl. Phys. 13, S2 (2013)CrossRefGoogle Scholar
  25. 25.
    Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T.: Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017)CrossRefGoogle Scholar
  26. 26.
    Shin, G.S., Choi, W.-G., Na, S., Gökdemir, F.P., Moon, T.: Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018)CrossRefGoogle Scholar
  27. 27.
    Kayesh, E., Matsuishi, K., Chowdhury, T.H., Kaneko, R., Noda, T., Islam, A.: Enhanced photovoltaic performance of perovskite solar cells by copper chloride (CuCl2) as an additive in single solvent perovskite precursor. Electron. Mater. Lett. 14, 712 (2018)CrossRefGoogle Scholar
  28. 28.
    Kim, C., Choi, H., Kim, J.I., Lee, S., Kim, J., Lee, W., Hwang, T., Kang, S., Moon, T., Park, B.: Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Nanoscale Res. Lett. 9, 295 (2014)CrossRefGoogle Scholar
  29. 29.
    Choi, H., Kim, J., Nahm, C., Kim, C., Nam, S., Kang, J., Lee, B., Hwang, T., Kang, S., Choi, D.J., Kim, Y.-H., Park, B.: The role of ZnO-coating-layer thickness on the recombination in CdS quantum-dot-sensitized solar cells. Nano Energy 2, 1218 (2013)CrossRefGoogle Scholar
  30. 30.
    Lee, S.-Y., Lee, W., Nahm, C., Kim, J., Byun, S., Hwang, T., Lee, B.-K., Jang, Y.I., Lee, S., Lee, H.-M., Park, B.: Nanostructural analysis of ZnO:Al thin films for carrier-transport mechanisms. Curr. Appl. Phys. 13, 775 (2013)CrossRefGoogle Scholar
  31. 31.
    Nahm, C., Shin, S., Lee, W., Kim, J.I., Jung, D.-R., Kim, J., Nam, S., Byun, S., Park, B.: Electronic transport and carrier concentration in conductive ZnO:Ga thin films. Curr. Appl. Phys. 13, 415 (2013)CrossRefGoogle Scholar
  32. 32.
    Lee, B., Kim, J.I., Lee, S., Hwang, T., Nam, S., Choi, H., Kim, K., Kim, J., Park, B.: Oriented hierarchical porous TiO2 nanowires on Ti substrate: evolution of nanostructures for dye-sensitized solar cells. Electrochim. Acta 145, 231 (2014)CrossRefGoogle Scholar
  33. 33.
    Kim, J., Choi, H., Nahm, C., Kim, C., Kim, J.I., Lee, W., Kang, S., Lee, B., Hwang, T., Park, H.H., Park, B.: Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1−xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)CrossRefGoogle Scholar
  34. 34.
    Salim, T., Sun, S., Abe, Y., Krishna, A., Grimsdalea, A.C., Lam, Y.M.: Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943 (2015)CrossRefGoogle Scholar
  35. 35.
    Umeyama, T., Imahori, H.: A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO2 and utilization of nanocarbon materials. Dalton Trans. 46, 15615 (2017)CrossRefGoogle Scholar
  36. 36.
    Hawash, Z., Ono, L.K., Raga, S.R., Lee, M.V., Qi, Y.: Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem. Mater. 27, 562 (2015)CrossRefGoogle Scholar
  37. 37.
    Juarez-Perez, E.J., Leyden, M.R., Wang, S., Ono, L.K., Hawash, Z., Qi, Y.: Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer. Chem. Mater. 28, 5702 (2016)CrossRefGoogle Scholar
  38. 38.
    Wang, S., Sina, M., Parikh, P., Uekert, T., Shahbazian, B., Devaraj, A., Meng, Y.S.: Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett. 16, 5594 (2016)CrossRefGoogle Scholar
  39. 39.
    Lee, B., Hwang, T., Lee, S., Shin, B., Park, B.: Microstructural evolution of hybrid perovskites promoted by chlorine and its impact on the performance of solar cell. Sci. Rep. 9, 4803 (2019)CrossRefGoogle Scholar
  40. 40.
    Hwang, T., Yun, A.J., Kim, J., Cho, D., Kim, S., Hong, S., Park, B.: Electronic traps and their correlations to perovskite solar cell performance via compositional and thermal annealing controls. ACS Appl. Mater. Interfaces 11, 6907 (2019)CrossRefGoogle Scholar
  41. 41.
    Malinauskas, T., Tomkute-Luksiene, D., Sens, R., Daskeviciene, M., Send, R., Wonneberger, H., Jankauskas, V., Bruder, I., Getautis, V.: Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7, 11107 (2015)CrossRefGoogle Scholar
  42. 42.
    Ono, L.K., Raga, S.R., Remeika, M., Winchester, A.J., Gabea, A., Qi, Y.: Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J. Mater. Chem. A 3, 15451 (2015)CrossRefGoogle Scholar
  43. 43.
    Jena, A.K., Numata, Y., Ikegamia, M., Miyasaka, T.: Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. J. Mater. Chem. A 6, 2219 (2018)CrossRefGoogle Scholar
  44. 44.
    Ramavenkateswari, K., Venkatachalam, P.: Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell. Electron. Mater. Lett. 12, 628 (2016)CrossRefGoogle Scholar
  45. 45.
    Park, C.-G., Choi, W.-G., Na, S., Moon, T.: All-inorganic perovskite CsPbI2Br through co-evaporation for planar heterojunction solar cells. Electron. Mater. Lett. 15, 56 (2019)CrossRefGoogle Scholar
  46. 46.
    Rafique, S., Abdullah, S.M., Shahid, M.M., Ansari, M.O., Sulaiman, K.: Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT:PSS double decked hole transport layer. Sci. Rep. 7, 39555 (2017)CrossRefGoogle Scholar
  47. 47.
    Ha, S.R., Park, S., Oh, J.T., Kim, D.H., Cho, S., Bae, S.Y., Kang, D.-W., Kim, J.-M., Choi, H.: Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells. Nanoscale 10, 13187 (2018)CrossRefGoogle Scholar
  48. 48.
    Ochiai, S., Kumar, P., Santhakumar, K., Shin, P.-K.: Examining the effect of additives and thicknesses of hole transport layer for efficient organic solar cell devices. Electron. Mater. Lett. 9, 399 (2013)CrossRefGoogle Scholar
  49. 49.
    Li, L., Gibson, E.A., Qin, P., Boschloo, G., Gorlov, M., Hagfeldt, A., Sun, A.: Double-layered NiO photocathodes for p-Type DSSCs with record IPCE. Adv. Mater. 22, 1759 (2010)CrossRefGoogle Scholar
  50. 50.
    Brisse, R., Faddoul, R., Bourgeteau, T., Tondelier, T., Leroy, J., Campidelli, S., Berthelot, T., Geffroy, B., Jousselme, B.: Inkjet printing NiO-based p-type dye-sensitized solar cells. ACS Appl. Mater. Interfaces 9, 2369 (2017)CrossRefGoogle Scholar
  51. 51.
    Manders, J.R., Tsang, S.-W., Hartel, M.J., Lai, T.-H., Chen, S., Amb, C.M., Reynolds, J.R., So, F.: Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013)CrossRefGoogle Scholar
  52. 52.
    Jiang, F., Choy, W.C.H., Li, X., Zhang, D., Cheng, J.: Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930 (2015)CrossRefGoogle Scholar
  53. 53.
    Kim, J., Park, H.J., Grigoropoulos, C.P., Lee, D., Jang, J.: Solution-processed nickel oxide nanoparticles with NiOOH for hole injection layers of high-efficiency organic light-emitting diodes. Nanoscale 8, 17608 (2016)CrossRefGoogle Scholar
  54. 54.
    Choi, H., Hwang, T., Lee, S., Nam, S., Kang, J., Lee, B., Park, B.: The Construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sources 274, 937 (2015)CrossRefGoogle Scholar
  55. 55.
    Jung, E., Lee, H., Chae, H., Cho, S.M.: Effect of hole-transport-layer thickness on deep-blue emission in top-emitting cavity organic light-emitting diodes. Electron. Mater. Lett. 11, 764 (2015)CrossRefGoogle Scholar
  56. 56.
    Liu, S., Liu, R., Chen, Y., Ho, S., Kim, J.H., So, F.: Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chem. Mater. 15, 4528 (2014)CrossRefGoogle Scholar
  57. 57.
    Rajeswari, R., Mrinalini, M., Prasanthkumar, S., Giribabu, L.: Emerging of inorganic hole transporting materials for perovskite solar cells. Chem. Rec. 17, 681 (2017)CrossRefGoogle Scholar
  58. 58.
    Yang, H., Tao, Q., Zhang, X., Tang, A., Ouyang, J.: Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloys Compd. 459, 98 (2008)CrossRefGoogle Scholar
  59. 59.
    Lee, B., Shin, B., Park, B.: Uniform Cs2SnI6 thin films for lead-free and stable perovskite optoelectronics via hybrid deposition approaches. Electron. Mater. Lett. 15, 192 (2019)CrossRefGoogle Scholar
  60. 60.
    Lee, W., Hwang, T., Lee, S., Lee, S.-Y., Kang, J., Lee, B., Kim, J., Moon, T., Park, B.: Organic-acid texturing of transparent electrodes toward broadband light trapping in thin-film solar cells. Nano Energy 17, 180 (2015)CrossRefGoogle Scholar
  61. 61.
    Yin, X., Liu, J., Ma, J., Zhang, C., Chen, P., Que, M., Yang, Y., Que, W., Niu, C., Shao, J.: Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells. J. Power Sources 329, 398 (2015)CrossRefGoogle Scholar
  62. 62.
    Chen, W., Liu, F.-Z., Feng, X.-Y., Djurišić, A.B., Chan, W.K., He, Z.-B.: Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017)CrossRefGoogle Scholar
  63. 63.
    Sajid, S., Elseman, A.B., Huang, H., Ji, J., Dou, S., Jiang, H., Liu, X., Wei, D., Cui, P., Li, M.: Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408 (2018)CrossRefGoogle Scholar
  64. 64.
    Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Jang, G.S., Nam, S., Park, B.: Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 6, 25648 (2016)CrossRefGoogle Scholar
  65. 65.
    Liu, Z., Zhu, A., Cai, F., Tao, L., Zhou, Y., Zhao, Z., Chen, Q., Cheng, Y.B., Zhou, H.: Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5, 6597 (2017)CrossRefGoogle Scholar
  66. 66.
    Nejand, B.A., Ahmadi, V., Shahverdi, H.R.: New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells. ACS Appl. Mater. Interfaces 7, 21807 (2015)CrossRefGoogle Scholar
  67. 67.
    Lee, S.-Y., Hwang, T., Lee, W., Lee, S., Choi, H., Ahn, S.-W., Lee, H.-M., Park, B.: Oxygen-controlled seed layer in DC sputter-deposited ZnO:Al substrate for Si thin-film solar cells. IEEE J. Photovolt. 5, 473 (2015)CrossRefGoogle Scholar
  68. 68.
    Kim, J.I., Lee, W., Hwang, T., Kim, J., Lee, S.-Y., Kang, S., Choi, H., Hong, S., Park, H.H., Moon, T., Park, B.: Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides. Sol. Energy Mater. Sol. Cells 122, 282 (2014)CrossRefGoogle Scholar
  69. 69.
    Lee, B., Moon, T., Kim, T.-G., Choi, D.-K., Park, B.: Dielectric relaxation of atomic-layer-deposited HfO2 thin films from 1 kHz to 5 GHz. Appl. Phys. Lett. 87, 012901 (2005)CrossRefGoogle Scholar
  70. 70.
    Liu, Z., Zhang, M., Xu, X., Bu, L., Zhang, W., Li, W., Zhao, Z., Wang, M., Cheng, Y.-B., He, H.: p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015)CrossRefGoogle Scholar
  71. 71.
    Xu, X., Liu, Z., Zuo, Z., Zhang, M., Zhao, Z., Shen, Y., Zhou, H., Chen, Q., Yang, Y., Wang, M.: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402 (2015)CrossRefGoogle Scholar
  72. 72.
    Liu, Z., Zhang, M., Xu, X., Cai, F., Yuan, H., Bu, L., Li, W., Zhu, A., Zhao, Z., Wang, M., Cheng, Y.-B., He, H.: NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. J. Mater. Chem. A 3, 24121 (2015)CrossRefGoogle Scholar
  73. 73.
    Woo, H., Wi, S., Kim, J., Kim, J., Lee, S., Hwang, T., Kang, J., Kim, J., Park, K., Gil, B., Nam, S., Park, B.: Complementary surface modification by disordered carbon and reduced graphene oxide on SnO2 hollow spheres as an anode for Li-ion battery. Carbon 129, 342 (2018)CrossRefGoogle Scholar
  74. 74.
    Yang, Y., Chen, H., Zheng, X., Meng, X., Zhang, T., Hu, C., Bai, Y., Xiao, S., Yang, S.: Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy 42, 322 (2017)CrossRefGoogle Scholar
  75. 75.
    Wang, K.-C., Jeng, J.-Y., Shen, P.-S., Chang, Y.-C., Diau, E.W.-G., Tsai, C.-H., Chao, T.-Y., Hsu, H.-C., Lin, P.-Y., Chen, P., Guo, T.-F., Wen, T.-C.: p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014)CrossRefGoogle Scholar
  76. 76.
    Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., Yang, S.: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. Engl. 53, 12571 (2014)Google Scholar
  77. 77.
    Wang, K.-C., Shen, P.-S., Li, M.-H., Chen, S., Lin, M.-W., Chen, P., Guo, T.-F.: Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851 (2014)CrossRefGoogle Scholar
  78. 78.
    Hwang, T., Lee, S., Kim, J., Kim, J., Kim, C., Shin, B., Park, B.: Tailoring the mesoscopic TiO2 layer: concomitant parameters for enabling high-performance perovskite solar cells. Nanoscale Res. Lett. 12, 57 (2017)CrossRefGoogle Scholar
  79. 79.
    Lee, S.-Y., Choi, H., Li, H., Ji, K., Nam, S., Choi, J., Ahn, S.-W., Lee, H.-M., Park, B.: Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell. Sol. Energy Mater. Sol. Cells 120, 412 (2014)CrossRefGoogle Scholar
  80. 80.
    Nahm, C., Choi, H., Kim, J., Byun, S., Kang, S., Hwang, T., Park, H.H., Ko, J., Park, B.: A simple template-free ‘sputtering deposition and selective etching’ process for nanoporous thin films and its application to dye-sensitized solar cells. Nanotechnology 24, 365604 (2013)CrossRefGoogle Scholar
  81. 81.
    Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., Hsu, Y.-J.: Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107 (2014)CrossRefGoogle Scholar
  82. 82.
    Cui, J., Meng, F., Zhang, H., Cao, K., Yuan, H., Cheng, Y., Huang, F., Wang, M.: CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl. Mater. Interfaces 6, 22862 (2014)CrossRefGoogle Scholar
  83. 83.
    Park, J.H., Seo, J., Park, S., Shin, S.S., Kim, Y.C., Jeon, N.J., Shin, H.-W., Ahn, T.K., Noh, J.H., Yoon, S.C., Hwang, C.S., Seok, S.I.: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015)CrossRefGoogle Scholar
  84. 84.
    Zhang, H., Cheng, J., Lin, F., He, H., Mao, J., Wong, K.S., Jen, A.K.-Y., Choy, W.C.H.: Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10, 1503 (2016)CrossRefGoogle Scholar
  85. 85.
    You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y.M., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75 (2016)CrossRefGoogle Scholar
  86. 86.
    Zhou, Y., Yin, X., Luo, Q., Zhao, X., Zhou, D., Han, J., Hao, F., Tai, M., Li, J., Liu, P., Jiang, K., Lin, H.: Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes. ACS Appl. Mater. Interfaces 10, 31384 (2018)CrossRefGoogle Scholar
  87. 87.
    Bush, K.A., Palmstorm, A.F., Yu, Z.J., Boccard, M., Cheacharoen, R., Mailoa, J.P., McMeekin, D.P., Rolston, N., Prasanna, R., Sofia, S., Harwood, D., Ma, W., Moghadam, F., Snaith, H.J., Buonassisi, T., Holman, Z.C., Bent, S.F., McGehee, M.: 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017)CrossRefGoogle Scholar
  88. 88.
    Wang, Y., Rho, W.-Y., Yang, H.-Y., Mahmoudi, T., Seo, S., Lee, D.-H., Hahn, Y.-B.: Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3–NiO nanoparticles composite. Nano Energy 27, 535 (2016)CrossRefGoogle Scholar
  89. 89.
    Lin, M.-W., Wang, K.-C., Wang, J.-H., Li, M.-H., Lai, Y.-L., Ohigashi, T., Kosugi, N., Chen, P., Wei, D.-H., Guo, T.-F., Hsu, Y.-J.: Improve hole collection by interfacial chemical redox reaction at a mesoscopic NiO/CH3NH3PbI3 heterojunction for efficient photovoltaic cells. Adv. Mater. Interfaces 3, 1600135 (2016)CrossRefGoogle Scholar
  90. 90.
    Shin, S.S., Yeom, E.J., Yang, W.S., Hur, S., Kim, M.G., Im, J., Seo, J., Noh, J.H., Seok, S.I.: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167 (2017)CrossRefGoogle Scholar
  91. 91.
    Sta, I., Jlassi, M., Hajji, M., Ezzaouia, H.: Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method. Thin Solid Films 555, 131 (2014)CrossRefGoogle Scholar
  92. 92.
    Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015)CrossRefGoogle Scholar
  93. 93.
    Li, G., Jiang, Y., Deng, S., Tam, A., Xu, P., Wong, M., Kwok, H.-S.: Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 4, 1700463 (2017)CrossRefGoogle Scholar
  94. 94.
    Kim, J.H., Liang, P.-W., Williams, S.T., Cho, N., Chueh, C.-C., Glaz, M.S., Ginger, D.S., Jen, A.K.-Y.: High-Performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695 (2015)CrossRefGoogle Scholar
  95. 95.
    Jung, J.W., Chueh, C.-C., Jen, A.K.-Y.: A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27, 7874 (2015)CrossRefGoogle Scholar
  96. 96.
    Yue, S., Liu, K., Xu, R., Li, M., Azam, M., Ren, K., Liu, J., Sun, Y., Wang, Z., Cao, D., Yan, X., Qu, S., Lei, Y., Wang, Z.: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy Environ. Sci. 10, 2570 (2017)CrossRefGoogle Scholar
  97. 97.
    Yaacobi-Gross, N., Treat, N.D., Pattanasattayavong, P., Faber, H., Perumal, A.K., Stingelin, N., Bradley, D.D.C., Stavrinou, P.N., Heeney, M., Anthopoulos, T.D.: High-efficiency organic photovoltaic cells based on the solution-processable hole transporting interlayer copper thiocyanate (CuSCN) as a replacement for PEDOT:PSS. Adv. Energy Mater. 5, 1401529 (2015)CrossRefGoogle Scholar
  98. 98.
    Kumara, G.R.R.A., Konno, A., Senadeera, G.K.R., Jayaweera, P.V.V., De Silva, D.B.R.A., Tennakone, K.: Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol. Energy Mater. Sol. Cells 69, 195 (2001)CrossRefGoogle Scholar
  99. 99.
    O’Regan, B., Lenzmann, F., Muis, R., Wienke, J.: A solid-state dye-sensitized solar cell fabricated with pressure-treated P25–TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem. Mater. 14, 5023 (2002)CrossRefGoogle Scholar
  100. 100.
    O’Regan, B.C., Scully, S., Mayer, A.C., Palomares, E., Durrant, J.: The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J. Phys. Chem. B 109, 4616 (2005)CrossRefGoogle Scholar
  101. 101.
    Perumal, A., Faber, H., Yaacobi-Gross, N., Pattanasattayavong, P., Burgess, C., Jha, S., McLachlan, M.A., Stavrinou, P.N., Anthopoulos, T.D., Bradley, D.D.C.: High-efficiency, solution-processed, multilayer phosphorescent organic light-emitting diodes with a copper thiocyanate hole-injection/hole-transport layer. Adv. Mater. 27, 93 (2015)CrossRefGoogle Scholar
  102. 102.
    Pattanasattayavong, P., Ndjawa, G.O.N., Zhao, K., Chou, K.W., Yaacobi-Gross, N., O’Regan, B.C., Amassian, A., Anthopoulos, T.D.: Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49, 4154 (2013)CrossRefGoogle Scholar
  103. 103.
    Jaffe, J.E., Kaspar, T.C., Droubay, T.C., Varga, T., Bowden, M.E., Exarhos, G.J.: Electronic and defect structures of CuSCN. J. Phys. Chem. C 114, 9111 (2010)CrossRefGoogle Scholar
  104. 104.
    Jung, J.W., Chueh, C.-C., Jen, A.K.-Y.: High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv. Energy Mater. 5, 1500486 (2015)CrossRefGoogle Scholar
  105. 105.
    Ito, S., Tanaka, S., Vahlman, H., Nishino, H., Manabe, K., Lund, P.: Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects. ChemPhysChem 15, 1194 (2014)CrossRefGoogle Scholar
  106. 106.
    Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M.K., Grätzel, M.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014)CrossRefGoogle Scholar
  107. 107.
    Ye, S., Sun, W., Li, Y., Yan, W., Peng, H., Bian, Z., Liu, Z., Huang, C.: CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723 (2015)CrossRefGoogle Scholar
  108. 108.
    Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y., Huang, C.: A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28, 9648 (2016)CrossRefGoogle Scholar
  109. 109.
    Madhavan, V.E., Zimmermann, I., Roldán-Carmona, C., Grancini, G., Buffiere, M., Belaidi, A., Nazeeruddin, M.K.: Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Lett. 1, 1112 (2016)CrossRefGoogle Scholar
  110. 110.
    Yang, I.S., Sohn, M.R., Sung, S.D., Kim, Y.J., Yoo, Y.J., Kim, J., Lee, W.I.: Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 32, 414 (2017)CrossRefGoogle Scholar
  111. 111.
    Liu, J., Pathak, S.K., Sakai, N., Sheng, R., Bai, S., Wang, Z., Snaith, H.J.: Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv. Mater. Interfaces 3, 1600571 (2016)CrossRefGoogle Scholar
  112. 112.
    Jung, M., Kim, Y.C., Jeon, N.J., Yang, W.S., Seo, J., Noh, J.H., Seok, S.I.: Thermal stability of CuSCN hole conductor-based perovskite solar cells. ChemSusChem 9, 2592 (2016)CrossRefGoogle Scholar
  113. 113.
    Arora, N., Dar, M.I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S.M., Grätzel, M.: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768 (2017)CrossRefGoogle Scholar
  114. 114.
    Sun, W., Peng, H., Li, Y., Yan, W., Liu, Z., Bian, Z., Huang, C.: Solution-processed copper iodide as an inexpensive and effective anode buffer layer for polymer solar cells. J. Phys. Chem. C 118, 16806 (2014)CrossRefGoogle Scholar
  115. 115.
    Tennakone, K., Kumara, G.R.R.A., Kumarasinghe, A.R., Wijayantha, K.G.U., Sirimanne, P.M.: A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10, 1689 (1995)CrossRefGoogle Scholar
  116. 116.
    Taguchi, T., Zhang, X.-T., Sutanto, I., Tokuhiro, K.-I., Rao, T.N., Watanabe, H., Nakamori, T., Uragami, M., Fujishima, A.: Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chem. Commun. 2480 (2003)Google Scholar
  117. 117.
    Yum, J.-H., Chen, P., Grätzel, M., Nazeeruddin, M.K.: Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 1, 699 (2008)CrossRefGoogle Scholar
  118. 118.
    Wagner, J.B., Wagner, C.: Electrical conductivity measurements on cuprous halides. J. Chem. Phys. 26, 1597 (1957)CrossRefGoogle Scholar
  119. 119.
    Perera, V.P.S., Tennakone, K.: Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Sol. Energy Mater. Sol. C 79, 249 (2003)CrossRefGoogle Scholar
  120. 120.
    Inudo, S., Miyake, M., Hirato, T.: Electrical properties of CuI films prepared by spin coating. Phys. Status Solidi A 210, 2395 (2013)CrossRefGoogle Scholar
  121. 121.
    Christians, J.A., Fung, R.C.M., Kamat, P.V.: An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014)CrossRefGoogle Scholar
  122. 122.
    Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Kim, J., Gil, B., Park, B.: Synergetic effect of double-step blocking layer for the perovskite solar cell. J. Appl. Phys. 122, 145106 (2017)CrossRefGoogle Scholar
  123. 123.
    Hwang, T., Cho, D., Kim, J., Kim, J., Lee, S., Lee, B., Kim, K.H., Hong, S., Kim, C., Park, B.: Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 25, 91 (2016)CrossRefGoogle Scholar
  124. 124.
    Choi, H., Nahm, C., Kim, J., Moon, J., Nam, S., Jung, D.-R., Park, B.: The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 12, 737 (2012)CrossRefGoogle Scholar
  125. 125.
    Kim, J., Choi, H., Nahm, C., Moon, J., Kim, C., Nam, S., Jung, D.-R., Park, B.: The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J. Power Sources 196, 10526 (2011)CrossRefGoogle Scholar
  126. 126.
    Sepalage, G.A., Meyer, S., Pascoe, A., Scully, A.D., Huang, F., Bach, U., Cheng, Y.-B., Spiccia, L.: Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of JV hysteresis. Adv. Funct. Mater. 25, 5650 (2015)CrossRefGoogle Scholar
  127. 127.
    Chen, W.-Y., Deng, L.-L., Dai, S.-M., Wang, X., Tian, C.-B., Zhan, X.-X., Xie, S.-Y., Huang, R.-B., Zheng, L.-S.: Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 19353 (2015)CrossRefGoogle Scholar
  128. 128.
    Sun, W., Ye, S., Rao, H., Li, Y., Liu, Z., Xiao, L., Chen, Z., Bian, Z., Huang, C.: Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale 8, 15954 (2016)CrossRefGoogle Scholar
  129. 129.
    Wang, H., Yu, Z., Jiang, X., Li, J., Cai, B., Yang, X., Sun, L.: Efficient and stable inverted planar perovskite solar cells employing CuI as hole-transporting layer prepared by solid–gas transformation. Energy Technol. 5, 1836 (2017)CrossRefGoogle Scholar
  130. 130.
    Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945 (2012)CrossRefGoogle Scholar
  131. 131.
    Hossain, M.I., Alharbi, F.H., Tabet, N.: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 120, 370 (2015)CrossRefGoogle Scholar
  132. 132.
    Zuo, C., Ding, L.: Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528 (2015)CrossRefGoogle Scholar
  133. 133.
    Chatterjee, S., Pal, A.J.: Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120, 1428 (2016)CrossRefGoogle Scholar
  134. 134.
    Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., Wang, L., Hedhili, M.N., Li, Y., Wu, K., Wang, X., Mohammed, O.F., Wu, T.: Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8, 6173 (2016)CrossRefGoogle Scholar
  135. 135.
    Liu, C., Zhou, X., Chen, S., Zhao, X., Dai, S., Xu, B.: Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv. Sci. 6, 1801169 (2019)CrossRefGoogle Scholar
  136. 136.
    Kim, C., Kim, J., Choi, H., Nahm, C., Kang, S., Lee, S., Lee, B., Park, B.: The effect of TiO2-coating layer on the performance in nanoporous ZnO-based dye-sensitized solar cells. J. Power Sources 232, 159 (2013)CrossRefGoogle Scholar
  137. 137.
    Kim, J., Choi, H., Nahm, C., Kim, C., Nam, S., Kang, S., Jung, D.-R., Kim, J.I., Kang, J., Park, B.: The role of a TiCl4 treatment on the performance of CdS quantum-dot-sensitized solar cells. J. Power Sources 220, 108 (2012)CrossRefGoogle Scholar
  138. 138.
    Kim, J.I., Kim, J., Lee, J., Jung, D.-R., Kim, H., Choi, H., Lee, S., Byun, S., Kang, S., Park, B.: Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 7, 482 (2012)CrossRefGoogle Scholar
  139. 139.
    Jung, D.-R., Kim, J., Nam, S., Nahm, C., Choi, H., Kim, J.I., Lee, J., Kim, S., Park, B.: Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance. Appl. Phys. Lett. 99, 041906 (2011)CrossRefGoogle Scholar
  140. 140.
    Jung, D.-R., Son, D., Kim, J., Kim, C., Park, B.: Highly luminescent surface-passivated ZnS:Mn nanoparticles by a simple one-step synthesis. Appl. Phys. Lett. 93, 163118 (2008)CrossRefGoogle Scholar
  141. 141.
    Sun, W., Li, Y., Ye, S., Rao, H., Yan, W.-B., Peng, H.-T., Li, Y., Liu, Z., Wang, S., Chen, Z., Xiao, L., Bian, Z., Huang, C.: High-performance inverted planar heterojunction perovskite solar cells based on solution-processed CuOx hole transport layer. Nanoscale 8, 10806 (2016)CrossRefGoogle Scholar
  142. 142.
    Rao, H., Ye, S., Sun, W., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Li, Y., Huang, C.: A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27, 51 (2016)CrossRefGoogle Scholar
  143. 143.
    Bandara, J., Yasomanee, J.P.: p-Type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semicond. Sci. Technol. 22, 20 (2007)CrossRefGoogle Scholar
  144. 144.
    Nattestad, A., Zhang, X., Bach, U., Cheng, Y.: Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. J. Photonics Energy 1, 011103 (2011)CrossRefGoogle Scholar
  145. 145.
    Ahmed, J., Blakely, C.K., Prakash, J., Bruno, S.R., Yu, M., Wu, Y., Poltavets, V.V.: Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. Alloys Compd. 591, 275 (2014)CrossRefGoogle Scholar
  146. 146.
    Nahm, C., Choi, H., Kim, J., Jung, D.-R., Kim, C., Moon, J., Lee, B., Park, B.: The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl. Phys. Lett. 99, 253107 (2011)CrossRefGoogle Scholar
  147. 147.
    Wi, S., Park, J., Lee, S., Kim, J., Gil, B., Yun, A.J., Sung, Y.-E., Park, B., Kim, C.: Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy 39, 371 (2017)CrossRefGoogle Scholar
  148. 148.
    Xiong, D., Xu, Z., Zeng, X., Zhang, W., Chen, W., Xu, X., Wang, M., Cheng, Y.-B.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Am. Chem. 22, 24760 (2012)Google Scholar
  149. 149.
    Xu, X., Cui, J., Han, J., Zhang, J., Zhang, Y., Luan, L., Alemu, G., Wang, Z., Shen, Y., Xiong, D., Chen, W., Wei, Z., Yang, S., Hu, B., Cheng, Y., Wang, M.: Near field enhanced photocurrent generation in p-type dye-sensitized solar cells. Sci. Rep. 4, 3961 (2014)CrossRefGoogle Scholar
  150. 150.
    Powar, S., Xiong, D., Daeneke, T., Ma, M.T., Gupta, A., Lee, G., Makuta, S., Tachibana, Y., Chen, W., Spiccia, L., Cheng, Y.-B., Götz, G., Bäuerle, P., Bach, U.: Improved photovoltages for p-type dye-sensitized solar cells using CuCrO2 nanoparticles. J. Phys. Chem. C 118, 16375 (2014)CrossRefGoogle Scholar
  151. 151.
    Daniel, U., Anamaria, D., Sebarchievicia, I., Miclau, M.: Photovoltaic performance of Co-doped CuCrO2 for p-type dye-sensitized solar cells application. Energy Procedia 112, 497 (2017)CrossRefGoogle Scholar
  152. 152.
    Wang, J., Lee, Y.-J., Hsu, J.W.P.: Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics. J. Mater. Chem. C 4, 3607 (2016)CrossRefGoogle Scholar
  153. 153.
    Wang, J., Daunis, T.B., Cheng, L., Zhang, B., Kim, J., Hsu, J.W.P.: Combustion synthesis of p-type transparent conducting CuCrO2+x and Cu:CrOx thin films at 180 °C. ACS Appl. Mater. Interfaces 10, 3732 (2018)CrossRefGoogle Scholar
  154. 154.
    Renaud, A., Chavillon, B., Pleux, L.L., Pellegrin, Y., Blart, E., Boujtita, M., Pauporté, T., Cario, L., Jobic, S., Odobel, F.: CuGaO2: a promising alternative for NiO in p-type dye solar cells. J. Mater. Chem. 22, 14353 (2012)CrossRefGoogle Scholar
  155. 155.
    Xu, Z., Xiong, D., Wang, H., Zhang, W., Zeng, X., Ming, L., Chen, W., Xu, X., Cui, J., Wang, M., Powar, S., Bach, U., Cheng, Y.-B.: Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J. Mater. Chem. A 2, 2968 (2014)CrossRefGoogle Scholar
  156. 156.
    Wang, J., Ibarra, V., Barrera, D., Xu, L., Lee, Y.-J., Hsu, J.W.P.: Solution synthesized p-type copper gallium oxide nanoplates as hole transport layer for organic photovoltaic devices. J. Phys. Chem. Lett. 6, 1071 (2015)CrossRefGoogle Scholar
  157. 157.
    Gao, S., Zhao, Y., Gou, P., Chen, N., Xie, Y.: Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnology 14, 538 (2003)CrossRefGoogle Scholar
  158. 158.
    Igbari, F., Li, M., Hu, Y., Wang, Z.-K., Liao, L.-S.: A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 4, 1326 (2016)CrossRefGoogle Scholar
  159. 159.
    Xiong, D., Zeng, X., Zhang, W., Wang, H., Zhao, X., Chen, W., Cheng, Y.-B.: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53, 4106 (2014)CrossRefGoogle Scholar
  160. 160.
    Park, K., Kim, J., Wi, S., Lee, S., Hwang, T., Kim, J., Kang, J., Choi, J.-P., Nam, S., Park, B.: Optimum morphology of mixed-olivine mesocrystals for a Li-ion battery. Inorg. Chem. 57, 5999 (2018)CrossRefGoogle Scholar
  161. 161.
    Barnabé, A., Thimont, Y., Lalanne, M., Presmanesa, L., Tailhades, P.: p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J. Mater. Chem. C 3, 6012 (2015)CrossRefGoogle Scholar
  162. 162.
    Sánchez-Alarcón, R.I., Oropeza-Rosario, G., Gutierrez-Villalobos, A., Muro-López, M.A., Martínez-Martínez, R., Zaleta-Alejandre, E., Falcony, C., Alarcón-Flores, G., Fragoso, E., Hernández-Silva, O., Perez-Cappe, E., Laffita, Y.M., Aguilar-Frutis, M.: Ultrasonic spray-pyrolyzed CuCrO2 thin films. J. Phys. D Appl. Phys. 49, 175102 (2016)CrossRefGoogle Scholar
  163. 163.
    Nie, S., Liu, A., Meng, Y., Shin, B., Liu, G., Shan, F.: Solution-processed ternary p-type CuCrO2 semiconductor thin films and their application in transistors. J. Mater. Chem. C 6, 1393 (2018)CrossRefGoogle Scholar
  164. 164.
    Dunlap-Shohl, W.A., Daunis, T.B., Wang, X., Wang, J., Zhang, B., Barrera, D., Yan, Y., Hsu, J.W.P., Mitzi, D.B.: Room-temperature fabrication of a delafossite CuCrO2 hole transport layer for perovskite solar cells. J. Mater. Chem. A 6, 469 (2018)CrossRefGoogle Scholar
  165. 165.
    Qin, P.-L., He, Q., Chen, C., Zheng, X.-L., Yang, G., Tao, H., Xiong, L.-B., Xiong, L., Li, G., Fang, G.-J.: High-performance rigid and flexible perovskite solar cells with low-temperature solution-processable binary metal oxide hole-transporting materials. Solar RRL 1, 1700058 (2017)CrossRefGoogle Scholar
  166. 166.
    Zhang, H., Wang, H., Zhu, H., Chueh, C.-C., Chen, W., Yang, S., Jen, A.K.-Y.: Low-temperature solution-processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells. Adv. Energy Mater. 8, 1702762 (2018)CrossRefGoogle Scholar
  167. 167.
    Jeong, S., Seo, S., Shin, H.: p-Type CuCrO2 particulate films as the hole transporting layer for CH3NH3PbI3 perovskite solar cells. RSC Adv. 8, 27956 (2018)CrossRefGoogle Scholar
  168. 168.
    Akin, S., Liu, Y., Dar, M.I., Zakeeruddin, S.M., Grätzel, M., Turand, S., Sonmezoglu, S.: Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J. Mater. Chem. A 6, 20327 (2018)CrossRefGoogle Scholar
  169. 169.
    Zhang, H., Wang, H., Chen, W., Jen, A.K.-Y.: CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater. 29, 1604984 (2017)CrossRefGoogle Scholar
  170. 170.
    Srinivasan, R., Chavillon, B., Doussier-Brochard, C., Cario, L., Paris, M., Gautron, E., Deniard, P., Odobel, F., Jobic, S.: Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. J. Mater. Chem. 18, 5647 (2008)CrossRefGoogle Scholar
  171. 171.
    Yu, M., Draskovic, T.I., Wu, Y.: Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53, 5845 (2014)CrossRefGoogle Scholar
  172. 172.
    Chen, Y., Yang, Z., Wang, S., Zheng, X., Wu, Y., Yuan, N., Zhang, W.-H., Liu, S.F.: Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018)CrossRefGoogle Scholar
  173. 173.
    Papadas, I.T., Savva, A., Ioakeimidis, A., Eleftheriou, P., Armatas, G.S., Choulis, S.A.: Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells. Mater. Today Energy 8, 57 (2018)CrossRefGoogle Scholar
  174. 174.
    Rao, H., Sun, W., Ye, S., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Huang, C.: Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. Nano Energy 27, 51 (2016)CrossRefGoogle Scholar
  175. 175.
    Lv, M., Zhu, J., Huang, Y., Li, Y., Shao, Z., Xu, Y., Dai, S.: Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells. ACS Appl. Mater. Interfaces 7, 17482 (2015)CrossRefGoogle Scholar
  176. 176.
    Khanzada, L.S., Levchuk, I., Hou, Y., Azimi, H., Osvet, A., Ahmad, R., Brandl, M., Herre, P., Distaso, M., Hock, R., Peukert, W., Batentschuk, M., Brabec, C.J.: Effective ligand engineering of the Cu2ZnSnS4 nanocrystal surface for increasing hole transport efficiency in perovskite solar cells. Adv. Funct. Mater. 26, 8300 (2016)CrossRefGoogle Scholar
  177. 177.
    Patel, S.B., Patel, A.H., Gohel, J.V.: A novel and cost effective CZTS hole transport material applied in perovskite solar cells. CrystEngComm 20, 7677 (2018)CrossRefGoogle Scholar
  178. 178.
    Ge, J., Yan, Y.: Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells. J. Mater. Chem. C 5, 6406 (2017)CrossRefGoogle Scholar
  179. 179.
    Ge, J., Grice, C.R., Yan, Y.: Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells. J. Mater. Chem. A 5, 2920 (2017)CrossRefGoogle Scholar
  180. 180.
    Kim, J., Shin, B.: Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells. Electron. Mater. Lett. 13, 373 (2017)CrossRefGoogle Scholar
  181. 181.
    Qin, P., He, Q., Yang, G., Yua, X., Xiong, L., Fang, G.: Metal ions diffusion at heterojunction chromium oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 10, 93 (2018)CrossRefGoogle Scholar
  182. 182.
    Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013)CrossRefGoogle Scholar
  183. 183.
    Yao, X., Qi, J., Xu, W., Jiang, X., Gong, X., Cao, Y.: Cesium-doped vanadium oxide as the hole extraction layer for efficient perovskite solar cells. ACS Omega 3, 1117 (2018)CrossRefGoogle Scholar
  184. 184.
    Li, D., Tong, C., Ji, W., Fu, Z., Wan, Z., Huang, Q., Ming, Y., Mei, A., Hu, Y., Rong, Y., Han, H.: Vanadium oxide post-treatment for enhanced photovoltage of printable perovskite solar cells. ACS Sustain. Chem. Eng. 7, 2619 (2019)CrossRefGoogle Scholar
  185. 185.
    Shalan, A.E., Oshikiri, T., Narra, S., Elshanawany, M.M., Ueno, K., Wu, H.-P., Nakamura, K., Shi, X., Diau, E.W.-G., Misawa, H.: Cobalt oxide (CoOx) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 8, 33592 (2016)CrossRefGoogle Scholar
  186. 186.
    Bashir, A., Shukla, A., Lew, J.H., Shukla, S., Bruno, A., Gupta, D., Baikie, T., Patidar, R., Akhter, Z., Priyadarshi, A., Mathews, N., Mhaisalkar, S.G.: Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. ACS Appl. Mater. Interfaces 8, 33592 (2018)Google Scholar
  187. 187.
    Chiang, C.-W., Chen, C.-C., Nazeeruddin, M.K., Wu, C.-G.: A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. J. Mater. Chem. A 6, 13751 (2018)CrossRefGoogle Scholar
  188. 188.
    Tseng, Z.-L., Chen, L.-C., Chiang, C.-H., Chang, S.-H., Chen, C.-C., Wu, C.-G.: Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Sol. Energy 139, 484 (2016)CrossRefGoogle Scholar
  189. 189.
    Im, K., Heo, J.H., Im, S.H., Kim, J.S.: Scalable synthesis of Ti-doped MoO2 nanoparticle-hole-transporting material with high moisture stability for CH3NH3PbI3 perovskite solar cells. Chem. Eng. J. 330, 698 (2017)CrossRefGoogle Scholar
  190. 190.
    Matsui, T., Yamamoto, T., Nishihara, T., Morisawa, R., Yokoyama, T., Sekiguchi, T., Negami, T.: Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85 °C/85% 1000 h stability. Adv. Mater. 31, 1806823 (2019)CrossRefGoogle Scholar
  191. 191.
    Christians, J.A., Schulz, P., Tinkham, J.S., Schloemer, T.H., Harvey, S.P., Villers, B.J.T., Sellinger, A., Berry, J.J., Luther, J.M.: Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability. Nat. Energy 3, 68 (2018)CrossRefGoogle Scholar
  192. 192.
    Sanehira, E.M., Villers, B.J.T., Schulz, P., Reese, M.O., Ferrere, S., Zhu, K., Lin, L.Y., Berry, J.J., Luther, J.M.: Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38 (2016)CrossRefGoogle Scholar
  193. 193.
    Domanski, K., Alharbi, E.A., Hagfeldt, A., Grätzel, M., Tress, W.: Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61 (2018)CrossRefGoogle Scholar
  194. 194.
    Cho, D., Hwang, T., Cho, D.-G., Park, B., Hong, S.: Photoconductive noise microscopy revealing quantitative effect of localized electronic traps on the perovskite-based solar cell performance. Nano Energy 43, 29 (2018)CrossRefGoogle Scholar
  195. 195.
    Cheng, M., Li, Y., Safdari, M., Chen, C., Liu, P., Kloo, L., Sun, L.: Efficient perovskite solar cells based on a solution processable nickel(II) phthalocyanine and vanadium oxide integrated hole transport layer. Adv. Energy Mater. 7, 1602556 (2017)CrossRefGoogle Scholar
  196. 196.
    Kim, G.-W., Kang, G., Choi, K., Choi, H., Park, T.: Solution processable inorganic–organic double-layered hole transport layer for highly stable planar perovskite solar cells. Adv. Energy Mater. 8, 1801386 (2018)CrossRefGoogle Scholar
  197. 197.
    Savva, A., Papadas, I.T., Tsikritzis, D., Ioakeimidis, A., Galatopoulos, F., Kapnisis, K., Fuhrer, R., Hartmeier, B., Oszajca, M.F., Luechinger, N.A., Kennou, S., Armatas, G.S., Choulis, S.A.: Inverted perovskite photovoltaics using flame spray pyrolysis solution based CuAlO2/Cu–O hole-selective contact. ACS Appl. Energy Mater. 2, 2276 (2019)CrossRefGoogle Scholar
  198. 198.
    Cao, J., Yu, H., Zhou, S., Qin, M., Lau, T.-K., Lu, X., Zhao, N., Wong, C.-P.: Low-temperature solution-processed NiOx films for air-stable perovskite solar cells. J. Mater. Chem. A 5, 11071 (2017)CrossRefGoogle Scholar
  199. 199.
    Mali, S.S., Patil, J.V., Kim, H., Luque, R., Hong, C.K.: Highly efficient thermally stable perovskite solar cells via Cs:NiOx/CuSCN double-inorganic hole extraction layer interface engineering. Mater. Today 26, 8 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoulKorea

Personalised recommendations