Advertisement

High-Performance Amorphous Silicon Thin Film Solar Cells Prepared at 100 °C: Toward Flexible Building-Integrated Photovoltaics

  • Dong-Won KangEmail author
  • Jun Ryu
  • Makoto Konagai
Original Article - Energy and Sustainability
  • 20 Downloads

Abstract

For low-cost and lightweight polymer/plastic substrates in flexible building-integrated photovoltaic (BIPV) modules, low-temperature processing is essential. Amorphous silicon (a-Si:H) requires processing at a temperature of 200–250 °C by plasma-enhanced chemical vapor deposition to obtain satisfactory optoelectronic properties, which limits such substrates in terms of thermal budget. This study is focused on the fabrication of p–i–n-type a-Si:H solar cells at relatively low temperatures (100 °C). Intrinsic a-Si:H films with large optical gaps (1.83 eV) were prepared at 100 °C using a high hydrogen dilution ratio. In addition, p-type amorphous silicon oxide and n-type microcrystalline silicon oxide films with large optical gaps and suitable conductivities were prepared at 100 °C using a gas mixture containing the dopant B2H6 or PH3 and CO2. Finally, an a-Si:H p–i–n cell was fabricated at 100 °C; it exhibited an excellent power conversion efficiency of 9.0%, which was higher than those reported for a-Si:H thin film photovoltaics prepared at 100 °C. We believe that this study will open promising routes for the development of high-performance and flexible BIPVs.

Graphic Abstract

Keywords

Amorphous silicon Low temperature Thin film Solar cells Chemical vapor deposition 

Notes

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT; NRF-2018R1C1B6008028) and was also supported by the Chung-Ang University Research Scholarship Grants in 2019.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Peter, S.C.: Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 3, 1557 (2018)CrossRefGoogle Scholar
  2. 2.
    Attoye, D., Tabet Aoul, K., Hassan, A.: A review on building integrated photovoltaic façade customization potentials. Sustainability 9, 2287 (2017)CrossRefGoogle Scholar
  3. 3.
    dos Santos, Í.P., Rüther, R.: The potential of building-integrated (BIPV) and building-applied photovoltaics (BAPV) in single-family, urban residences at low latitudes in Brazil. Energy Build. 50, 290 (2012)CrossRefGoogle Scholar
  4. 4.
    Pagliaro, M., Ciriminna, R., Palmisano, G.: BIPV: merging the photovoltaic with the construction industry. Prog. Photovol. Res. Appl. 18, 61 (2010)CrossRefGoogle Scholar
  5. 5.
    Chae, Y.T., Kim, J., Park, H., Shin, B.: Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Appl. Energy 129, 217 (2014)CrossRefGoogle Scholar
  6. 6.
    Shukla, A.K., Sudhakar, K., Baredar, P.: Recent advancement in BIPV product technologies: a review. Energy Build. 140, 188 (2017)CrossRefGoogle Scholar
  7. 7.
    Yang, J., Jo, H., Choi, S.-W., Kang, D.-W., Kwon, J.-D.: All pin hydrogenated amorphous silicon oxide thin film solar cells for semi-transparent solar cells. Thin Solid Films 662, 97 (2018)CrossRefGoogle Scholar
  8. 8.
    Jo, H., Yang, J.-H., Lee, J.-H., Lim, J.-W., Lee, J., Shin, M., Ahn, J.-H., Kwon, J.-D.: Transparent bifacial a-Si: H solar cells employing silver oxide embedded transparent rear electrodes for improved transparency. Sol. Energy 170, 940 (2018)CrossRefGoogle Scholar
  9. 9.
    Wook Lim, J., Shin, M., Lee, D.J., Hyun Lee, S., Jin Yun, S.: Highly transparent amorphous silicon solar cells fabricated using thin absorber and high-bandgap-energy n/i-interface layers. Sol. Energy Mater. Sol. Cells 128, 301 (2014)CrossRefGoogle Scholar
  10. 10.
    Virtuani, A., Strepparava, D.: Modelling the performance of amorphous and crystalline silicon in different typologies of building-integrated photovoltaic (BIPV) conditions. Sol. Energy 146, 113 (2017)CrossRefGoogle Scholar
  11. 11.
    Myong, S.Y., Jeon, S.W.: Efficient outdoor performance of esthetic bifacial a-Si: H semi-transparent PV modules. Appl. Energy 164, 312 (2016)CrossRefGoogle Scholar
  12. 12.
    Jung, K.H., Yun, S.J., Lee, S.H., Lee, Y.J., Lee, K.-S., Lim, J.W., Kim, K.-B., Kim, M., Schropp, R.E.I.: Double-layered Ag–Al back reflector on stainless steel substrate for a-Si: H thin film solar cells. Sol. Energy Mater. Sol. Cells 145, 368 (2016)CrossRefGoogle Scholar
  13. 13.
    Korevaar, B.A., Adriaenssens, G.J., Smets, A.H.M., Kessels, W.M.M., Song, H.Z., van de Sanden, M.C.M., Schram, D.C.: High hole drift mobility in a-Si: H deposited at high growth rates for solar cell application. J. Non-Cryst. Solids 266–269, 380 (2000)CrossRefGoogle Scholar
  14. 14.
    Jeon, M., Yoshiba, S., Kamisako, K.: Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique. Curr. Appl. Phys. 10, S237 (2010)CrossRefGoogle Scholar
  15. 15.
    Vygranenko, Y., Khosropour, A., Yang, R., Sazonov, A., Kosarev, A., Abramov, A., Terukov, E.: Lightweight amorphous silicon photovoltaic modules on flexible plastic substrate. Can. J. Phys. 92, 871 (2014)CrossRefGoogle Scholar
  16. 16.
    Yang, R., Lee, C.-H., Cui, B., Sazonov, A.: Flexible semi-transparent a-Si: H pin solar cells for functional energy-harvesting applications. Mater. Sci. Eng. B 229, 1 (2018)CrossRefGoogle Scholar
  17. 17.
    Tao, K., Wang, J., Cai, H., Zhang, D., Sui, Y., Zhang, Y., Sun, Y.: Low-temperature preparation of flexible a-Si: H solar cells with hydrogenated nanocrystalline silicon p layer. Vacuum 86, 1477 (2012)CrossRefGoogle Scholar
  18. 18.
    Brinza, M., Rath, J.K., Schropp, R.E.I.: Thin film silicon n–i–p solar cells deposited by VHF PECVD at 100 °C substrate temperature. Sol. Energy Mater. Sol. Cells 93, 680 (2009)CrossRefGoogle Scholar
  19. 19.
    Koch, C., Ito, M., Schubert, M.: Low-temperature deposition of amorphous silicon solar cells. Sol. Energy Mater. Sol. Cells 68, 227 (2001)CrossRefGoogle Scholar
  20. 20.
    Alpuim, P., Chu, V., Conde, J.P.: Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys. 86, 3812 (1999)CrossRefGoogle Scholar
  21. 21.
    Guha, S., Yang, J., Williamson, D.L., Lubianiker, Y., Cohen, J.D., Mahan, A.H.: Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl. Phys. Lett. 74, 1860 (1999)CrossRefGoogle Scholar
  22. 22.
    Mandal, S., Dhar, S., Das, G., Mukhopadhyay, S., Barua, A.K.: Development of optimized n-μc-Si:H/n-a-Si: H bilayer and its application for improving the performance of single junction a-Si solar cells. Sol. Energy 124, 278 (2016)CrossRefGoogle Scholar
  23. 23.
    Kang, D.-W., Sichanugrist, P., Zhang, H., Konagai, M.: Wide-bandgap p-type microcrystalline silicon oxycarbide using additional trimethylboron for silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 25, 384 (2017)CrossRefGoogle Scholar
  24. 24.
    Ambrosio, R., Moreno, M., Torres, A., Carrillo, A., Vivaldo, I., Cosme, I., Heredia, A.: Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells. J. Alloys Compd. 643, S27 (2015)CrossRefGoogle Scholar
  25. 25.
    Goyal, A., Soni, P.R.: Functionally graded nanocrystalline silicon powders by mechanical alloying. Mater. Lett. 214, 111 (2018)CrossRefGoogle Scholar
  26. 26.
    Elarbi, N., Jemaï, R., Outzourhit, A., Khirouni, K.: Amorphous/microcrystalline transition of thick silicon film deposited by PECVD. Appl. Phys. A 122, 566 (2016)CrossRefGoogle Scholar
  27. 27.
    Gabriel, O., Kirner, S., Klingsporn, M., Friedrich, F., Stannowski, B., Schlatmann, R.: On the plasma chemistry during plasma enhanced chemical vapor deposition of microcrystalline silicon oxides. Plasma Process. Polym. 12, 82 (2015)CrossRefGoogle Scholar
  28. 28.
    Nakada, K., Miyajima, S., Konagai, M.: Application of n-type microcrystalline silicon oxide as back reflector of crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 54, 082301 (2015)CrossRefGoogle Scholar
  29. 29.
    Das, G., Bose, S., Mukhopadhyay, S., Banerjee, C., Barua, A.K.: Innovative utilization of improved n-doped μc-SiOx: H films to amplify the performance of micromorph solar cells. Silicon 11, 487 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Energy Systems EngineeringChung-Ang UniversitySeoulRepublic of Korea
  2. 2.Advanced Research LaboratoriesTokyo City UniversityTokyoJapan

Personalised recommendations