Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals

  • R. C. Silva
  • A. F. Gouveia
  • J. C. Sczancoski
  • R. S. Santos
  • J. L. S. Sá
  • E. Longo
  • L. S. CavalcanteEmail author
Original Article - Theory, Characterization and Modeling


This letter reports the synthesis of RuO2 nanocrystals by the anionic surfactant-assisted hydrothermal method at 90 °C for 24 h followed by heat treatment at 500 °C for 1 h. These crystals were structurally characterized by means of X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the morphological features these crystals. The optical behavior was investigated by ultraviolet–visible (UV–Vis) spectroscopy. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed to obtain the electronic band structure and density of states. For electrochemical behavior, the supercapacitor properties of RuO2 crystals were investigated by cyclic voltammetry. XRD patterns and Rietveld refinement data indicate that RuO2 crystals have a rutile-type tetragonal structure. FE-SEM images showed the presence of sphere-like RuO2 crystals with an average crystal sized at around 19.13 nm. The experimental band gap energy (Egap[exp]) was estimated at 2.60 eV by using UV–Vis spectroscopy, while the theoretical calculations indicate an Egap[theo] at 1.92 eV. These calculations revealed a band structure predominantly composed of O 2p orbitals (valence band) and Ru 4d orbitals (conduction band). The specific capacitance measured for RuO2 film was 193 F g−1 at 5 mV s−1 in an electrode with 0.5 mg of electroactive material in 1 M Na2SO4 solution.

Graphic Abstract

For the first time, we report on the electronic structure, optical and electrochemical behavior of RuO2 nanocrystals/film synthesized by the anionic surfactant-assisted hydrothermal synthesis (90 °C for 24 h) followed by heat treatment (500 °C for 1 h).


RuO2 Nanocrystals Rietveld refinement Optical band gap Band structure Capacitance 



The Brazilian authors acknowledge the financial support of the Brazilian research financing institutions CNPq (350711/2012-7; 150949/2018-9; 312318/2017-0; 408036/2018-4), FAPEPI, FAPESP (2012/14004-5), and CAPES.

Supplementary material

13391_2019_160_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 36 kb)


  1. 1.
    Vorontsov, A.V., Kabachkov, E.N., Balikhin, I.L., Kurkin, E.N., Troitskii, V.N., Smirniotis, P.G.: Correlation of surface area with photocatalytic activity of TiO2. J. Adv. Oxid. Technol. 21, 127–137 (2018)CrossRefGoogle Scholar
  2. 2.
    Lam, S.-M., Kee, M.-W., Sin, J.-C.: Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation. Mater. Chem. Phys. 212, 35–43 (2018)CrossRefGoogle Scholar
  3. 3.
    Costa, M.J.S., Costa, G.S., Lima, A.E.B., Luz Jr., G.E., Longo, E., Cavalcante, L.S., Santos, R.S.: Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density. Ionics 24, 3291–3297 (2018)CrossRefGoogle Scholar
  4. 4.
    Reddy, C.V., Babu, B., Reddy, I.N., Shim, J.: Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram. Int. 44, 6940–6948 (2018)CrossRefGoogle Scholar
  5. 5.
    Subramanian, V., Hall, S.C., Smith, P.H., Rambabu, B.: Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ion. 175, 511–515 (2004)CrossRefGoogle Scholar
  6. 6.
    Hong, D., Yim, S.: RuO2 thin films electrodeposited on polystyrene nanosphere arrays: growth mechanism and application to supercapacitor electrodes. Langmuir 34, 4249–4254 (2018)CrossRefGoogle Scholar
  7. 7.
    Li, X., Zheng, F., Zhou, D.F., Luo, Y.M., Li, Y.F., Lu, F.H.: Stable RuO2-based ternary composite electrode of sandwiched framework for electrochemical capacitors. Electrochim. Acta 289, 292–310 (2018)CrossRefGoogle Scholar
  8. 8.
    Liu, T., Pell, W.G., Conway, B.E.: Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42, 3541–3552 (1997)CrossRefGoogle Scholar
  9. 9.
    Arunachalam, R., Prataap, R.K.V., Raj, R.P., Mohan, S., Vijayakumar, J., Péter, L., Ahmad, M.A.: Pulse electrodeposited RuO2 electrodes for high-performance supercapacitor applications. Surf. Eng. 35, 102–108 (2019)CrossRefGoogle Scholar
  10. 10.
    Prataap, R.K.V., Arunachalam, R., Raj, R.P., Mohan, S., Peter, L.: Effect of electrodeposition modes on ruthenium oxide electrodes for supercapacitors. Curr. Appl. Phys. 18, 1143–1148 (2018)CrossRefGoogle Scholar
  11. 11.
    Icaza, J.C., Guduru, R.K.: Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. J. Alloys Compd. 735, 735–740 (2018)CrossRefGoogle Scholar
  12. 12.
    Hu, C.C., Chang, K.H., Lin, M.C., Wu, Y.T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRefGoogle Scholar
  13. 13.
    Chen, L.Y., Hou, Y., Kang, J.L., Hirata, A., Fujita, T., Chen, M.W.: Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3, 851–856 (2013)CrossRefGoogle Scholar
  14. 14.
    Bolzan, A.A., Fong, C., Kennedy, B.J., Howard, C.J.: Structural studies of rutile-type metal dioxides. Acta Cryst. B B53, 373–380 (1997)CrossRefGoogle Scholar
  15. 15.
    Haines, J., Léger, J.M., Schulte, O., Hull, S.: Neutron diffraction study of the ambient-pressure, Rutile-type and the high-pressure, CaCl2-type phases of ruthenium dioxide. Acta Cryst. B B53, 880–884 (1997)CrossRefGoogle Scholar
  16. 16.
    Gupta, S.D., Jha, P.K.: Vibrational and elastic properties as a pointer to stishovite to CaCl2 ferroelastic phase transition in RuO2. Earth Planet. Sci. Lett. 401, 31–39 (2014)CrossRefGoogle Scholar
  17. 17.
    Liu, X.M., Zhang, X.G.: NiO-based composite electrode with RuO2 for electrochemical capacitors. Electrochim. Acta 49, 229–232 (2004)CrossRefGoogle Scholar
  18. 18.
    Petrykin, V., Macounová, K., Okube, M., Mukerjee, S., Krtil, P.: Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal. Today 202, 63–69 (2013)CrossRefGoogle Scholar
  19. 19.
    Priya, R., Kanmani, S.: Solar photocatalytic generation of hydrogen under ultraviolet–visible light irradiation on (CdS/ZnS)/Ag2S + (RuO2/TiO2) photocatalysts. Bull. Mater. Sci. 33, 85–88 (2010)CrossRefGoogle Scholar
  20. 20.
    Jirkovský, J., Makarova, M., Krtil, P.: The effect of coherent domain size on the insertion activity of nanocrystalline RuO2. J. Electrochem. Soc. 152, A1613–A1619 (2005)CrossRefGoogle Scholar
  21. 21.
    Macounová, K., Makarova, M., Jirkovský, J., Franc, J., Krtil, P.: Parallel oxygen and chlorine evolution on Ru1−xNixO2−y nanostructured electrodes. Electrochim. Acta 53, 6126–6134 (2008)CrossRefGoogle Scholar
  22. 22.
    Suffredini, H.B., Tricoli, V., Avaca, L.A., Vatistas, N.: Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochem. Commun. 6, 1025–1028 (2004)CrossRefGoogle Scholar
  23. 23.
    Guglielmi, M., Colombo, P., Rigato, V., Battaglin, G., Boscolo-Boscoletto, A., DeBattisti, A.: Compositional and microstructural characterization of RuO2–TiO2 catalysts synthesized by the sol–gel method. J. Electrochem. Soc. 139, 1655–1661 (1992)CrossRefGoogle Scholar
  24. 24.
    Takasu, T., Onoue, S., Kameyama, K., Marakami, Y., Yahikoziwa, K.: Preparation of ultrafine RuO2–IrO2–TiO2 oxide particles by a sol–gel process. Electrochim. Acta 39, 1993–1997 (1994)CrossRefGoogle Scholar
  25. 25.
    Panic, V., Dekanski, A., Milonjic, S., Atanasoski, R., Nikolic, B.: The influence of the aging time of RuO2 and TiO2 sols on the electrochemical properties and behavior for the chlorine evolution reaction of activated titanium anodes obtained by the sol–gel procedure. Electrochim. Acta 46, 415–421 (2000)CrossRefGoogle Scholar
  26. 26.
    Melsheimer, J., Ziegler, D.: The oxygen electrode reaction in acid solutions on RuO2 electrodes prepared by the thermal decomposition method. Thin Solid Films 163, 301–308 (1988)CrossRefGoogle Scholar
  27. 27.
    Profeti, L.P.R., Simões, F.C., Olivi, P., Kokoh, K.B., Coutanceau, C., Leger, J.-M., Lamy, C.: Application of Pt + RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC. J. Power Sources 158, 1195–1201 (2006)CrossRefGoogle Scholar
  28. 28.
    Chang, K.H., Hu, C.C.: Hydrothermal synthesis of hydrous crystalline RuO2 nanoparticles for supercapacitors. Electrochem. Solid State Lett. 7, A466–A469 (2004)CrossRefGoogle Scholar
  29. 29.
    Shen, J., Li, T., Huang, W., Long, Y., Li, N., Ye, M.: One-pot polyelectrolyte assisted hydrothermal synthesis of RuO2-reduced graphene oxide nanocomposite. Electrochim. Acta 95, 155–161 (2013)CrossRefGoogle Scholar
  30. 30.
    Schütz, M.B., Xiao, L., Lehnen, T., Fischer, T., Mathur, S.: Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides. Int. Mater. Rev. 62, 341–374 (2018)CrossRefGoogle Scholar
  31. 31.
    Xue, J.J., Bigdeli, F., Liu, J.P., Hu, M.L., Morsali, A.: Ultrasonic-assisted synthesis and DNA interaction studies of two new Ru complexes; RuO2 nanoparticles preparation. Nanomedicine 13, 2691–2708 (2018)CrossRefGoogle Scholar
  32. 32.
    Yuan, C.Z., Jiang, Y.F., Zhao, Z.W., Zhao, S.J., Zhou, X., Cheang, T.Y., Xu, A.W.: Molecule-assisted synthesis of highly dispersed ultrasmall RuO2 nanoparticles on nitrogen-doped carbon matrix as ultraefficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 6, 11529–11535 (2018)CrossRefGoogle Scholar
  33. 33.
    Chang, K.H., Hu, C.C., Chou, C.Y.: Textural and capacitive characteristics of hydrothermally derived RuO2xH2O nanocrystallites: independent control of crystal size and water content. Chem. Mater. 19, 2112–2119 (2007)CrossRefGoogle Scholar
  34. 34.
    Lee, B.J., Sivakkumar, S.R., Ko, J.M., Kim, J.H., Jo, S.M., Kim, D.Y.: Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. J. Power Sources 168, 546–552 (2007)CrossRefGoogle Scholar
  35. 35.
    Chang, K.H., Hu, C.C.: Coalescence inhibition of hydrous RuO2 crystallites prepared by a hydrothermal method. Appl. Phys. Lett. 88, 193102–193104 (2006)CrossRefGoogle Scholar
  36. 36.
    Kim, I.H., Kim, K.B.: Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J. Electrochem. Soc. 153, A383–A389 (2006)CrossRefGoogle Scholar
  37. 37.
    Patake, V.D., Lokhande, C.D.: Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application. Appl. Surf. Sci. 254, 2820–2824 (2008)CrossRefGoogle Scholar
  38. 38.
    Li, X., Xiong, J., Luo, Y., Luo, Y.: Electrochemical properties of RuO2 electrodes as a function of thin film thickness. J. Electron. Mater. 47, 347–352 (2018)CrossRefGoogle Scholar
  39. 39.
    Dhanabal, R., Velmathi, S., Bose, A.C.: Fabrication of RuO2–Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity. J. Hazard. Mater. 344, 865–874 (2018)CrossRefGoogle Scholar
  40. 40.
    Li, D., Guo, X., Song, H., Sun, T., Wan, J.: Preparation of RuO2–TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium. J. Hazard. Mater. 351, 250–259 (2018)CrossRefGoogle Scholar
  41. 41.
    Pelegrini, R., Peralta-Zamora, P., de Andrade, A.R., Reyes, J., Durán, N.: Electrochemically assisted photocatalytic degradation of reactive dyes. Appl. Catal. B Environ. 22, 83–90 (1999)CrossRefGoogle Scholar
  42. 42.
    Kheirandish, S., Ghaedi, M., Dashtian, K., Pourebrahim, F., Jannesar, R., Pezeshkpour, V.: In vitro curcumin delivery and antibacterial activity of RuS2 and RuO2 nanoparticles loaded chitosan biopolymer. Appl. Organomet. Chem. 32, e4035–e4046 (2018)CrossRefGoogle Scholar
  43. 43.
    Sutton, J.E., Lorenzi, J.M., Krogel, J.T., Xiong, Q., Pannala, S., Matera, S., Savara, A.: Electrons to reactors multiscale modeling: catalytic CO oxidation over RuO2. ACS Catal. 8, 5002–5016 (2018)CrossRefGoogle Scholar
  44. 44.
    Edison, T.N.J.I., Atchudan, R., Lee, Y.R.: Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy 22, 2323–2329 (2019)CrossRefGoogle Scholar
  45. 45.
    Mikolasek, M., Frohlich, K., Husekova, K., Racko, J., Rehacek, V., Chymo, F., Tapajna, M., Harmatha, L.: Silicon based MIS photoanode for water oxidation: a comparison of RuO2 and Ni Schottky contacts. Appl. Surf. Sci. 461, 48–53 (2018)CrossRefGoogle Scholar
  46. 46.
    Shen, J., Li, T., Huang, W., Long, Y., Li, N., Ye, M.: One-pot polyelectrolyte assisted hydrothermal synthesis of RuO2-reduced graphene oxide nanocomposite. Electrochim. Acta 95, 155–161 (2013)CrossRefGoogle Scholar
  47. 47.
    Yang, Y., Hu, X., Xu, Z.: CTAB assisted immobilization of RuO2 nanoparticles on graphene oxide for electrochemical sensing of hydrazine. Fuller. Nanotub. Carbon Nanostructures 25, 435–441 (2017)CrossRefGoogle Scholar
  48. 48.
    Dong, C., Hu, S., Xing, M., Zhang, J.: Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts: Au and RuO2. Nanotechnology 29, 154005–154012 (2018)CrossRefGoogle Scholar
  49. 49.
    Lincoln, S.F., Richens, D.T., Sykes, A.G.: Metal aqua ions. In: McCleverty, J.A., Meyer, T.J. (eds.) Comprehensive Coordination Chemistry II, vol. 1, pp. 515−555 (1987)Google Scholar
  50. 50.
    Libby, L.: Linton Libby–Van Nostrand’s Encyclopedia of Chemistry, p. 2. Wiley, Hoboken (2005)Google Scholar
  51. 51.
    Orysyk, S.I., Rybachuk, L.N., Pekhnyo, V.I., Korduban, A.M., Buslaeva, T.M.: The formation of Ru(III) and Rh(III) chloro aqua complexes and tautomeric forms of carboxylic acid benzoylhydrazones for the synthesis of new coordination compounds promising for the practical use. Russ. J. Inorg. Chem. 55, 1075–1082 (2010)CrossRefGoogle Scholar
  52. 52.
    Povar, I., Spinu, O.: Ruthenium redox equilibria 1. Thermodynamic stability of Ru(III) and Ru(IV) hydroxides. J. Electrochem. Sci. Eng. 6, 123–133 (2016)CrossRefGoogle Scholar
  53. 53.
    Vijayabala, V., Senthilkumar, N., Nehru, K., Karvembu, R.: Hydrothermal synthesis and characterization of ruthenium oxide nanosheets using polymer additive for supercapacitor applications. J. Mater. Sci. Mater. Electron. 29, 323–330 (2018)CrossRefGoogle Scholar
  54. 54.
    McKeown, D.A., Hagans, P.L., Carette, L.P.L., Russell, A.E., Swider, K.E., Rolison, D.R.: Structure of hydrous ruthenium oxides: implications for charge storage. J. Phys. Chem. B 103, 4825–4832 (1999)CrossRefGoogle Scholar
  55. 55.
    Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C.M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D’Arco, P., Noel, Y., Causa, M., Rerat, M., Kirtman, B.: CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 114, 1287–1317 (2014)CrossRefGoogle Scholar
  56. 56.
    Becke, A.D.: Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1996)CrossRefGoogle Scholar
  57. 57.
    Lee, C.T., Yang, W.T., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Zhu, Z.H., Strempfer, J., Rao, R.R., Occhialini, C.A., Pelliciari, J., Choi, Y., Kawaguchi, T., You, H., Mitchell, J.F., Shao-Horn, Y., Comin, R.: Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202-1–017202-5 (2019)Google Scholar
  60. 60.
    Park, H.J., Lee, K., Kim, I.D., Choi, S.J., Ryu, B., Appl, A.C.S.: Abnormal optoelectric properties of two-dimensional protonic ruthenium oxide with a hexagonal structure. Mater. Inter. 10, 22661–22668 (2018)CrossRefGoogle Scholar
  61. 61.
    Thanh, N.T.K., Maclean, N., Mahiddine, S.: Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)CrossRefGoogle Scholar
  62. 62.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)CrossRefGoogle Scholar
  63. 63.
    Elcoro, L., Bradlyn, B., Wang, Z., Vergniory, M.G., Cano, J., Felser, C., Bernevig, B.A., Orobengoa, D., de la Flor, G., Aroyo, M.I.: Double crystallographic groups and their representations on the bilbao crystallographic server. J. Appl. Cryst. 50, 1457–1477 (2017)CrossRefGoogle Scholar
  64. 64.
    Momma, K., Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 41, 653–658 (2008)CrossRefGoogle Scholar
  65. 65.
    Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  66. 66.
    Kubelka, P., Munk, F.: Ein beitrag zur optik der farbanstriche (contribution to the optic of paint). Zeitschrift fur technische Physik 12, 593–601 (1931)Google Scholar
  67. 67.
    Morales, A.E., Mora, E.S., Pal, U.: Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista mexicana de física 53, 18–22 (2007)Google Scholar
  68. 68.
    Jin, Y.Z., Dong, G.Y., Jin, L., Chao, L.J., Wei, D., Lu, C.X., Dong, Y.X.: Electronic structure and optical properties of rutile RuO2 from first principles. Chin. Phys. B 19, 077102-1–077102-7 (2010)Google Scholar
  69. 69.
    Gujar, T.P., Shinde, V.R., Lokhande, C.D., Kim, W.-Y., Jung, K.D., Joo, O.S.: Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem. Commun. 9, 504–510 (2007)CrossRefGoogle Scholar
  70. 70.
    Ananth, A., Dharaneedharan, S., Gandhi, M.S., Heo, M.S., Mok, Y.S.: Novel RuO2 nanosheets–Facile synthesis, characterization and application. Chem. Eng. J. 223, 729–736 (2013)CrossRefGoogle Scholar
  71. 71.
    Patil, P.S., Ennaoui, A., Lokhande, C.D., Muller, M., Giersig, M., Diesner, K., Tributsch, H.: Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films. Thin Solid Films 310, 57–62 (1997)CrossRefGoogle Scholar
  72. 72.
    de Almeida, J.S., Ahuja, R.: Electronic and optical properties of RuO2 and IrO2. Phys. Rev. B 73, 165102-1–165102-6 (2006)CrossRefGoogle Scholar
  73. 73.
    Ahn, Y.R., Park, C.R., Jo, S.M., Kim, D.Y.: Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods. Appl. Phys. Lett. 90, 122106–122108 (2007)CrossRefGoogle Scholar
  74. 74.
    Li, X., Shen, J., Li, N., Ye, M.: Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J. Power Sources 282, 194–201 (2015)CrossRefGoogle Scholar
  75. 75.
    Devadas, A., Baranton, S., Napporn, T.W., Coutanceau, C.: Tailoring of RuO2 nanoparticles by microwave assisted “instant method” for energy storage applications. J. Power Sources 196, 4044–4053 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.PPGQUniversidade Estadual do PiauíTeresinaBrazil
  2. 2.Programa de Pós-Graduação em Ciência dos Materiais-PPCMUniversidade Federal do PiauíTeresinaBrazil
  3. 3.CDMFUniversidade Federal de São CarlosSão CarlosBrazil
  4. 4.CDMFUniversidade Estadual PaulistaAraraquaraBrazil

Personalised recommendations