Electronic Materials Letters

, Volume 15, Issue 3, pp 350–356 | Cite as

Shape Control Iron Pyrite Synthesized by Hot Injection Method: Counter Electrode for Efficient Dye-Sensitized Solar Cells

  • Phuong Ho
  • Toi Nguyen Van
  • Ji Hyun Lee
  • Yu Jeong Jang
  • Rajesh CherukuEmail author
  • Chinho Park
  • Kwang-Soon Ahn
  • Jae Hong KimEmail author
Original Article - Energy and Sustainability


The cubic and spherical shaped iron pyrite (FeS2) nanocrystals were synthesized in a pure phase form by an efficient hot injection method. These FeS2 nanocrystals were used as a counter electrode (CE) alternative to the conventional Pt CE in dye-sensitized solar cells (DSSCs) owing to its tremendous optical properties and low-cost. The obtained FeS2 nanocrystalline materials with excellent shape and phase purity were confirmed through XRD and Raman spectroscopy data. From Tafel, and impedance spectroscopy studies, the catalytic activity FeS2 CEs are found to be comparable with that of Pt CE. Along with the I3/I electrolyte, photo-conversion efficiency is found to be 6.9% (spherical), 6.2% (cubic) for the FeS2 CE, and 7% for Pt CE. The excellent performance of the FeS2 CE in DSSCs makes it a distinctive choice among the various CE materials studied including low-cost photovoltaics.

Graphical Abstract


Dye-sensitized solar cells Electrocatalytic activity Iron pyrite Counter electrode 



This study was supported by a grant from the Fundamental R&D program for Core Technology of Materials (10050966) funded by the Ministry of Knowledge Economy, Republic of Korea. This work was supported by the “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174030201760).

Supplementary material

13391_2019_140_MOESM1_ESM.docx (151 kb)
Supplementary material 1 (DOCX 150 kb)


  1. 1.
    Gratzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009)CrossRefGoogle Scholar
  2. 2.
    Gonga, J., Sumathya, K., Qiaob, Q., Zhoub, Z.: Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234 (2017)CrossRefGoogle Scholar
  3. 3.
    Yun, S., Liu, Y., Zhang, T., Ahmad, S.: Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells. Nanoscale 7, 11877 (2015)CrossRefGoogle Scholar
  4. 4.
    O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991)CrossRefGoogle Scholar
  5. 5.
    Yun, S., Lund, P.D., Hinsch, A.: Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 8, 3495 (2015)CrossRefGoogle Scholar
  6. 6.
    Hwang, S., Batmunkh, M., Nine, M.J., Chung, H., Jeong, H.: Dye-sensitized solar cell counter electrodes based on carbon nanotubes. Chem. Phys. Chem. 16, 53 (2015)CrossRefGoogle Scholar
  7. 7.
    Thomas, S., Deepak, T., Anjusree, G., Arun, T., Naira, S., Nair, A.: A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A. 2, 4474 (2014)CrossRefGoogle Scholar
  8. 8.
    Yun, S., Hagfeldt, A., Ma, T.: Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 26, 6210 (2014)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Al-Mamun, M., Liu, P., Wang, Y., Yang, H., Wang, H., Zhao, H.: The search for efficient electrocatalysts as counter electrode materials for dye-sensitized solar cells: mechanistic study, material screening and experimental validation. NPG Asia Mater. 7, e226 (2015)CrossRefGoogle Scholar
  10. 10.
    Papageorgiou, N., Maier, W., Gratzel, M.: An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc. 144, 876 (1997)CrossRefGoogle Scholar
  11. 11.
    Wu, J., Li, Y., Tang, Q., Yue, G., Lin, J., Huang, M., Meng, L.: Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci. Rep. 4, 4028 (2014)CrossRefGoogle Scholar
  12. 12.
    Trancik, J., Barton, S., Hone, J.: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982 (2008)CrossRefGoogle Scholar
  13. 13.
    Liu, G., Li, X., Wang, H., Rong, Y., Ku, Z., Xu, M., Liu, L., Hu, M., Yang, Y., Han, H.: A class of carbon supported transition metal_nitrogen complex catalysts for dye-sensitized solar cells. J. Mater. Chem. A 1, 1475 (2013)CrossRefGoogle Scholar
  14. 14.
    Susac, D., Zhu, L., Teo, M., Sode, A., Wong, K.C., Wong, P.C., Parsons, R.R., Bizzotto, D., Mitchell, K.A.R., Campbell, S.A.: Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J. Phys. Chem. C 111, 18715 (2007)CrossRefGoogle Scholar
  15. 15.
    Seefeld, S., Limpinsel, M., Liu, Y., Farhi, N., Weber, A., Zhang, Y., Berry, N., Kwon, Y.J., Perkins, C.L., Hemminger, J.C., Wu, R., Law, M.: Iron pyrite thin films synthesized from an Fe(acac)3 ink. J. Am. Chem. Soc. 135, 4412 (2013)CrossRefGoogle Scholar
  16. 16.
    Ennaoui, A., Fiechter, S., Pettenkofer, C., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, C., Tributsch, H.: Iron disulfide for solar energy conversion. Sol. Energy Mater. Sol. Cells 29, 289 (1993)CrossRefGoogle Scholar
  17. 17.
    Puthessery, J., Seefeld, S., Berry, N., Bibb, M., Law, M.: Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics. J. Am. Chem. Soc. 133, 716 (2011)CrossRefGoogle Scholar
  18. 18.
    Ge, H., Hai, L., Prabhakar, R.R., Ming, L.Y., Sritharan, T.: Evolution of nanoplate morphology, structure and chemistry during synthesis of pyrite by a hot injection method. RCS Adv. 4, 16489 (2014)Google Scholar
  19. 19.
    Zhu, L., Richardson, B.J., Yu, Q.: Controlled colloidal synthesis of iron pyrite FeS2 nanorods and quasi-cubic nanocrystal agglomerates. Nanoscale 6, 1029 (2014)CrossRefGoogle Scholar
  20. 20.
    Jiang, F., Peckler, L.T., Muscat, A.J.: Phase pure pyrite FeS2 nanocube synthesized using oleylamine as ligand, solvent, and reductant. Cryst. Growth Des. 15, 3565 (2015)CrossRefGoogle Scholar
  21. 21.
    Trinh, T.K., Pham, V.T.H., Truong, N.T.N., Kim, C.D., Park, C.: Iron pyrite: phase and shape control by facile hot injection method. J. Cryst. Growth 461, 53 (2017)CrossRefGoogle Scholar
  22. 22.
    Shukla, S., Loc, N.H., Boix, P.P., Koh, T.M., Prabhakar, R.R., Mulmudi, H.K., Zhang, J., Chen, S., Nf, C.F., Huan, C.H.A., Mathews, N., Sritharan, T., Xiong, Q.: Iron pyrite thin film counter electrodes for dye-sensitized solar cells: high efficiency for iodine and cobalt redox electrolyte cells. ACS Nano 8, 10597 (2014)CrossRefGoogle Scholar
  23. 23.
    Utyuzh, A.N.: Influence of temperature on raman spectra of the FeS2 single crystal with pyrite structure. Phys. Solid State 56, 2050 (2014)CrossRefGoogle Scholar
  24. 24.
    Kleppe, A.K., Jephcoat, A.P.: High-pressure Raman spectroscopic studies of FeS2 pyrite. Mineral. Mag. 68, 433 (2004)CrossRefGoogle Scholar
  25. 25.
    Gopel, W.: Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors. Prog. Surf. Sci. 20, 9 (1985)CrossRefGoogle Scholar
  26. 26.
    Geistlinger, H., Eisele, I., Flietner, B., Winter, R.: Dipole-and charge transfer contributions to the work function change of semiconducting thin films: experiment and theory. Sens. Actuators B 34, 499 (1996)CrossRefGoogle Scholar
  27. 27.
    Otero, R., Parga, A.L.V.D., Gallego, J.M.: Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces. Surf. Sci. Rep. 72, 105 (2017)CrossRefGoogle Scholar
  28. 28.
    Kavan, L., Yum, J.-H., Gratzel, M.: Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 11, 5501 (2011)CrossRefGoogle Scholar
  29. 29.
    Ion, L., Enculescu, I., Antohe, S.: Physical properties of CdTe nanowires electrodeposited by a template method, for photovoltaic applications. J. Optoelectron. Adv. Mater. 10, 3241 (2008)Google Scholar
  30. 30.
    Song, C., Wang, S., Dong, W., Fang, X., Shao, J., Zhu, J., Pan, X.: Hydrothermal synthesis of iron pyrite (FeS2) as efficient counter electrodes for dye-sensitized solar cells. Sol. Energy 133, 429 (2016)CrossRefGoogle Scholar
  31. 31.
    Lee, Y.H., Park, J.Y., Thogiti, S., Cheruku, R., Kim, J.H.: Application of CBZ dimer, C343 and SQ dye as photosensitizers for pn-tandem DSCs. Electron. Mater. Lett. 12, 524 (2016)CrossRefGoogle Scholar
  32. 32.
    Ho, P., Bao, L.Q., Cheruku, R., Kim, J.H.: Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses. Electron. Mater. Lett. 12, 638 (2016)CrossRefGoogle Scholar
  33. 33.
    He, B., Meng, X., Tang, Q.: Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6, 4812 (2014)CrossRefGoogle Scholar
  34. 34.
    Wang, W., Anghel, A.M., Marsan, B., Ha, N.L.C., Pootrakulchote, N., Zakeeruddin, S.M., Gratzel, M.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 15976 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsan-siRepublic of Korea

Personalised recommendations