Advertisement

Electronic Materials Letters

, Volume 15, Issue 3, pp 331–341 | Cite as

Electrochemical Deposition of γ-MnO2 on Ag/rGO Hybrid Films as Flexible Electrode Materials for Asymmetric Supercapacitor

  • Shiqing Sun
  • Yongkun Liu
  • Guohua JiangEmail author
  • Bo Yu
  • Uwamahoro Evariste
  • Pianpian MaEmail author
Original Article - Energy and Sustainability
  • 37 Downloads

Abstract

The flexible electrodes are the essential components for fabricating modern flexible supercapacitors. In this study, a composite hybrid film integrated with silver nanoparticles (Ag NPs), reduced graphene oxide (rGO) and γ-MnO2 nanorods as a flexible electrode has been developed by the electrochemical deposition method. The substrate (rGO) of the electrode not only provides mechanical stability but also ensures fast electron transfer during charge–discharge. The Ag NPs distributed in electrode provide the electronic channel to enhance the electric conductivity. The γ-MnO2 electroplated on the surface of hybrid films further improved the electrochemical performance of them. The resultant γ-MnO2/Ag/rGO hybrid films exhibit a high specific capacitance of 1090.3 F g−1 at current density of 0.3 A g−1. The asymmetric supercapacitor (ASC) devices were further fabricated by γ-MnO2/Ag/rGO films as anode and AC/rGO films as cathode electrodes within a wide operating voltage of 0–1.7 V. The energy density of obtained ASC devices was 71.8 Wh kg−1 at a power density of 279.4 W kg−1.

Graphical Abstract

Keywords

Supercapacitor Electrode Hybrid film 

Notes

Acknowledgements

This work was financially supported by Collaborative Innovation Center for Modern Textile Technology of Zhejiang Province (2011-Program) (20160202) and “521 Talents Training Plan” in Zhejiang Sci-Tech University.

Supplementary material

13391_2019_132_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2507 kb)

References

  1. 1.
    Liu, X., Sheng, G., Zhong, M., Zhou, X.: Hybrid nanowires and nanoparticles of WO3 in a carbon aerogel for supercapacitor applications. Nanoscale 10, 4209–4217 (2018)CrossRefGoogle Scholar
  2. 2.
    Tang, Z., Pei, Z., Wang, Z., Li, H., Zeng, J., Ruan, Z., Huang, Y., Zhu, M., Xue, Q., Yu, J., Zhi, C.: Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 130, 532–543 (2018)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Lu, Q., Huang, Z., Sun, S., Yu, B., Evariste, U., Jiang, G., Yao, Y.: Electrodeposition of Ni–Co–S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloy. Compd. 762, 301–311 (2018)CrossRefGoogle Scholar
  4. 4.
    Sun, S., Jiang, G., Liu, Y., Yu, B., Evariste, U.: Growth of MnO2 nanoparticles on hybrid carbon nanofibers for flexible symmetrical supercapacitors. Mater. Lett. 197, 35–37 (2017)CrossRefGoogle Scholar
  5. 5.
    Woodward, R., Markoulidis, F., Luca, F., Anthony, D., Malko, D., McDonald, T., Shaffer, M., Bismarck, A.: Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. J. Mater. Chem. A 6, 1840–1849 (2018)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Jiang, G., Yu, W., Liu, D., Liu, Y., Li, L., Huang, Q.: Electrospun carbon nanofiberic coated with ambutan-like NiCo2O4 microspheres as electrode materials. MRS Commun. 7, 90–96 (2017)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Jiang, G., Sun, S., Xu, B., Zhou, J., Zhang, Y., Yao, J.: Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J. Alloy. Compd. 731, 560–568 (2018)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Jiang, G., Sun, S., Xu, B., Zhou, J., Zhang, Y., Yao, J.: Growth of NiCo2S4 nanotubes on carbon nanofibers for high performance flexible supercapacitors. J. Electroanal. Chem. 804, 212–219 (2017)CrossRefGoogle Scholar
  9. 9.
    Sun, S., Jiang, G., Liu, Y., Yu, B., Evariste, U.: Preparation of α-MnO2/Ag/RGO hybrid film for flexible asymmetric supercapacitor. J. Energy Storage 18, 256–258 (2018)CrossRefGoogle Scholar
  10. 10.
    Fu, M., Chen, W., Zhu, X., Liu, Q.: One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. J. Power Sources 396, 41–48 (2018)CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Guo, L., Meng, Q., Wang, W., Liu, M., Jin, Z., Zhao, K.: Polyurethane and polyaniline foam-derived nickel oxide-incorporated porous carbon composite for high-performance supercapacitors. J. Mater. Sci. 53, 13156–13172 (2018)CrossRefGoogle Scholar
  12. 12.
    Qiu, X., Zhang, X., Fan, L.: In situ synthesis of highly active Na2Ti3O7 nanosheet on activated carbon fiber as anode for high-energy density supercapacitors. J. Mater. Chem. A 6, 16186–16195 (2018)CrossRefGoogle Scholar
  13. 13.
    Gunjakar, J., Inamdar, A., Hou, B., Cha, S., Pawar, S., Talha, A., Chavan, H., Kim, J., Cho, S., Lee, S., Jo, Y., Kim, H., Im, H.: Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 10, 8953–8962 (2018)CrossRefGoogle Scholar
  14. 14.
    Haladkar, S., Desai, M., Sartale, S., Alegaonkar, P.: Assessment of ecologically prepared carbon-nano-spheres for fabrication of flexible and durable supercell devices. J. Mater. Chem. A 6, 7246–7254 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhou, Y., Hu, X., Guo, S., Yu, C., Zhong, S., Liu, X.: Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim. Acta 264, 12–19 (2018)CrossRefGoogle Scholar
  16. 16.
    Subasri, A., Balakrishnan, K., Nagarajan, E., Devadoss, V., Subramania, A.: Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta 281, 329–337 (2018)CrossRefGoogle Scholar
  17. 17.
    Wang, F., Zhu, Y., Tian, W., Lv, X., Zhang, H., Hu, Z., Zhang, Y., Ji, J., Jiang, W.: Co-doped Ni3S2@CNTs array anchored on graphite foam with hierarchical conductive network for high-performance supercapacitor and hydrogen evolution electrode. J. Mater. Chem. A 6, 10490–10499 (2018)CrossRefGoogle Scholar
  18. 18.
    Kavil, J., Anjana, P., Periyat, P., Rakhi, R.: One-pot synthesis of g-C3N4/MnO2 and g-C3N4/SnO2 hybrid nanocomposites for supercapacitor applications. Sustain. Energ. Fuels 2, 2244–2251 (2018)CrossRefGoogle Scholar
  19. 19.
    Liu, K., Jiang, Q., Kacica, C., Derami, H., Biswas, P., Singamaneni, S.: Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Adv. 8, 31296–31302 (2018)CrossRefGoogle Scholar
  20. 20.
    Balamuralitharan, B., Cho, I., Bak, J., Kim, H.: V2O5 nanorod electrode material for enhanced electrochemical properties by facile hydrothermal method for supercapacitor applications. New J. Chem. 42, 11862–11875 (2018)CrossRefGoogle Scholar
  21. 21.
    Sun, W., Gao, G., Du, Y., Zhang, K., Wu, G.: A facile strategy for fabricating the hierarchical nanocomposites of V2O5 nanowire arrays on three-dimension N-doped graphene aerogel with synergistic effect for supercapacitor. J. Mater. Chem. A 6, 9938–9947 (2018)CrossRefGoogle Scholar
  22. 22.
    Liu, T., Zhang, L., You, W., Yu, J.: Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14, 1702407–1702412 (2018)CrossRefGoogle Scholar
  23. 23.
    Yan, S., Xu, L., Jiang, J., Xiao, H., Li, X.: An extra-long-life supercapacitor based on Co3O4/NiCo2O4/NiO/C&S composite by decomposition of Co/Ni-based coordination complex. J. Alloys Compd. 764, 684–690 (2018)CrossRefGoogle Scholar
  24. 24.
    Zhang, Q., Zhang, D., Miao, Z., Zhang, X., Chou, S.: Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14, 1702883–1702897 (2018)CrossRefGoogle Scholar
  25. 25.
    Gangaja, B., Nair, S., Santhanagopalan, D.: Interface engineered Li4Ti5O12–TiO2 dual-phase nanoparticles and CNT additive for supercapacitor-like high power Li-ion battery applications. Nanotechnology 29, 095402–095413 (2018)CrossRefGoogle Scholar
  26. 26.
    Yang, S., Han, Z., Zheng, F., Sun, J., Qiao, Z., Yang, X., Li, L., Li, C., Song, X., Cao, B.: ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes. Carbon 134, 15–21 (2018)CrossRefGoogle Scholar
  27. 27.
    Zhang, G., Ren, L., Hu, D., Gu, H., Zhang, S.: Sulfuric acid etching for fabrication of porous MnO2 for high-performance supercapacitor. J. Colloid. Interfaces Sci. 518, 84–91 (2018)CrossRefGoogle Scholar
  28. 28.
    Kang, D., Chen, Z., Hu, T., Ren, J., Dong, M.: Composite material of MnO2 and CNT for supercapacitor. Adv. Mater. Res. 663, 447–450 (2013)CrossRefGoogle Scholar
  29. 29.
    He, Y., Chen, W., Li, X., Zhang, Z., Fu, J., Zhao, C., Xie, E.: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174–182 (2013)CrossRefGoogle Scholar
  30. 30.
    Reddy, A., Shaijumon, M., Gowda, S., Multisegmented, P.: Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J. Phys. Chem. C 117, 658–663 (2010)CrossRefGoogle Scholar
  31. 31.
    Hashemzadeh, F., Motlagh, M., Maghsoudipour, A.: A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures. J. Sol–Gel Sci. Technol. 51, 169–174 (2009)CrossRefGoogle Scholar
  32. 32.
    Yang, J., Lian, L., Ruan, H., Xie, F., Wei, M.: Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim. Acta 136, 189–194 (2014)CrossRefGoogle Scholar
  33. 33.
    Zhu, J., Zhao, S., Wu, X., Wang, Y., Yu, L., Nan, C.: Wrapping RGO/MoO2/carbon textile as supercapacitor electrode with enhanced flexibility and areal capacitance. Electrochim. Acta 282, 784–791 (2018)CrossRefGoogle Scholar
  34. 34.
    Nathan, D., Boby, S., Basu, P., Mahesh, R., Harish, S., Joseph, S., Sagayaraj, P.: One-pot hydrothermal preparation of Cu2O–CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications. Appl. Surf. Sci. 449, 474–484 (2018)CrossRefGoogle Scholar
  35. 35.
    Zheng, S., Zheng, L., Zhu, Z., Chen, J., Kang, J., Huang, Z., Yang, D.: MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10, 62–67 (2018)CrossRefGoogle Scholar
  36. 36.
    Bokhari, S., Pan, H., Siddique, A., Imtiaz, M., Chen, Z., Li, Y., Zhu, S.: Self-assembly of β-FeOOH/rGO/CNT for a high-performance supercapacitor. Mater. Lett. 220, 140–143 (2018)CrossRefGoogle Scholar
  37. 37.
    He, J., Yang, D., Li, H., Cao, X., Kang, L., He, X., Jiang, R., Sun, J., Lei, Z., Liu, Z.: Mn3O4/RGO/SWCNT hybrid film for all-solid-state flexible supercapacitor with high energy density. Electrochim. Acta 283, 174182–174189 (2018)Google Scholar
  38. 38.
    Chao, J., Yang, L., Liu, J., Hu, R., Zhu, M.: Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim. Acta 270, 387–394 (2018)CrossRefGoogle Scholar
  39. 39.
    Kim, J., Ju, H., Inamdar, A., Jo, Y., Han, J., Kim, H., Im, H.: Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes. Energy 70, 473–477 (2014)CrossRefGoogle Scholar
  40. 40.
    Ghosh, D., Giri, S., Mandal, A., Das, C.: Graphene decorated with Ni(OH)2 and Ag deposited Ni(OH)2 stacked nanoplate for supercapacitor application. Chem. Phys. Lett. 573, 41–47 (2013)CrossRefGoogle Scholar
  41. 41.
    Keerthi, M., Cao, P., Balasubramanian, N.: Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications. J. Alloys Compd. 644, 534–544 (2015)CrossRefGoogle Scholar
  42. 42.
    Kumar, P., Som, S., Pandey, M., Das, S., Chanda, A., Singh, J.: Investigations on optical properties of ZnO decorated graphene oxide (ZnO@GO) and reduced graphene oxide (ZnO@r-GO). J. Alloys Compd. 744, 64–74 (2018)CrossRefGoogle Scholar
  43. 43.
    Wu, Z., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47, 493–499 (2009)CrossRefGoogle Scholar
  44. 44.
    Gao, Y., Wan, Y., Wei, B., Xia, Z.: Capacitive enhancement mechanisms and design principles of high-performance graphene oxide-based all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1706721–1706730 (2018)CrossRefGoogle Scholar
  45. 45.
    Shaikh, J., Shaikh, N., Kharade, R., Beknalkar, S., Patil, J., Suryawanshi, M., Kanjanaboos, P., Hong, C., Kim, J., Patil, P.: Symmetric supercapacitor: sulphurized graphene and ionic liquid. J. Colloid. Interfaces Sci. 527, 40–49 (2018)CrossRefGoogle Scholar
  46. 46.
    Zhu, G., Yang, L., Wang, W., Ma, M., Zhang, J., Wen, H., Zheng, D., Yao, Y.: Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chem. Commun. 54, 9234–9245 (2018)CrossRefGoogle Scholar
  47. 47.
    Hao, J., Peng, S., Li, H., Dang, S., Qin, T., Wen, Y., Huang, J., Ma, F., Gao, D., Li, F., Cao, G.: A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. J. Mater. Chem. A 6, 16094–16106 (2018)CrossRefGoogle Scholar
  48. 48.
    Peng, L., Xu, Z., Liu, Z., Guo, Y., Li, P., Gao, C.: Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589–1700597 (2017)CrossRefGoogle Scholar
  49. 49.
    Cai, X., Bai, H., Liu, Y., Shi, W.: Facile in situ synthesis of Ag and MnO2 anchored on carbon microtubes for high-performance asymmetric supercapacitor applications. Appl. Mater. Today 11, 193–199 (2018)CrossRefGoogle Scholar
  50. 50.
    Yang, J., Ma, M., Sun, C., Zhang, Y., Huang, W., Dong, X.: Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J. Mater. Chem. A 3, 1258–1264 (2014)CrossRefGoogle Scholar
  51. 51.
    Lu, S., Wang, X., Zhu, Q., Chen, C., Zhou, X., Huang, F., Li, K., He, L., Liu, Y., Pang, F.: Ag–K/MnO2 nanorods as highly efficient catalysts for formaldehyde oxidation at low temperature. RSC Adv. 8, 14221–14228 (2018)CrossRefGoogle Scholar
  52. 52.
    Chen, H., Jiang, G., Yu, W., Liu, D., Liu, Y., Li, L., Huang, Q., Tong, Z.: Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material. J. Mater. Chem. A 4, 5958–5964 (2016)CrossRefGoogle Scholar
  53. 53.
    Ma, L., Shen, X., Ji, Z., Zhu, G., Zhou, H.: Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem. Eng. J. 252, 95–103 (2014)CrossRefGoogle Scholar
  54. 54.
    Lim, L., Liu, Y., Liu, W., Tjandra, R., Rasenthiram, L., Chen, Z., Yu, A.: All-in-one graphene based composite fiber: toward wearable supercapacitor. ACS Appl. Mater. Inter. 9, 39576–39583 (2017)CrossRefGoogle Scholar
  55. 55.
    Yang, Z., Zhao, W., Niu, Y., Zhang, Y., Wang, L., Zhang, W., Xiang, X., Li, Q.: Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 132, 241–248 (2018)CrossRefGoogle Scholar
  56. 56.
    Meng, X., Lu, L., Sun, C.: Green synthesis of three-dimensional MnO2/graphene hydrogel composite as a high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces. 10, 16474–16481 (2018)CrossRefGoogle Scholar
  57. 57.
    Lv, X., Zhang, H., Wang, F., Hu, Z., Zhang, Y., Zhang, L., Xie, R., Ji, J.: Controllable synthesis of MnO2 nanostructure anchored on graphite foam with different morphology for high-performance asymmetric supercapacitor. Crystengcomm 20, 1690–1697 (2018)CrossRefGoogle Scholar
  58. 58.
    Li, H., Wang, L., Guan, Y., Su, Y., Mu, J., Che, H., Liu, A., Guo, Z.: Facile solvothermal synthesis of ZnCo2O4/MnO2, nanosheets composite with enhanced electrochemical properties as supercapacitor electrodes. Appl. Phys. A 124, 483–485 (2018)CrossRefGoogle Scholar
  59. 59.
    Liu, T., Jiang, C., You, W., Yu, J.: Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J. Mater. Chem. A 5, 8635–8643 (2017)CrossRefGoogle Scholar
  60. 60.
    Das, A., Bera, R., Maitra, A., Karan, S., Paria, S., Halder, L., Si, S., Bera, A., Khatua, B.: Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour. J. Mater. Chem. A 5, 22242–22250 (2017)CrossRefGoogle Scholar
  61. 61.
    Chen, H., Yan, Z., Liu, X., Guo, X., Zhang, Y., Liu, Z.: Rational design of microsphere and microcube MnCO3@MnO2 heterostructures for supercapacitor electrodes. J. Power Sources 353, 202–209 (2017)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)HangzhouChina
  2. 2.Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationHangzhouChina
  3. 3.Department of Polymer MaterialsZhejiang Sci-Tech UniversityHangzhouChina
  4. 4.Institute of Smart Fiber MaterialsZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations