Advertisement

Electronic Materials Letters

, Volume 15, Issue 3, pp 383–390 | Cite as

Influence of the W Content on the Characteristics of MoxW1−xSi2 Heating Elements Fabricated by Self-Propagating High-Temperature Synthesis

  • Sung-Chul Lee
  • Myung-Yeon Cho
  • Dong-Won Lee
  • Yong-Nam Kim
  • Jong-Min OhEmail author
  • Bae-Yeon KimEmail author
Original Article - Theory, Characterization and Modeling
  • 28 Downloads

Abstract

MoSi2-based composites are promising structural materials for high-temperature applications. MoxW1−xSi2 (x = 1, 0.9, 0.8, and 0.7) powders were successfully synthesized by self-propagating high-temperature synthesis. These powders were used to fabricate heating elements, which were then subjected to a post-annealing process to improve the structural quality. To determine the influence of the W content (0–30 mol%) on the characteristics of MoxW1−xSi2 composites, the surface morphologies, densities, and bending strengths of the MoxW1−xSi2 heating elements were investigated. Moreover, to validate the durability of the MoxW1−xSi2 heating elements, an accelerated degradation test (ADT) was conducted at temperatures up to 1700°C (heating rate = 5°C/min). The MoxW1−xSi2 heating element with 30 mol% of W exhibited a high density, a high bending strength, and superior durability after the ADT test. In contrast, the MoxW1−xSi2 heating element with 0 mol% of W showed inferior durability owing to the formation of bubbles at the MoxW1−xSi2 /SiO2 interface. Thus, the addition of W enhances the reliability and durability of MoxW1−xSi2 composites as heating elements.

Graphical Abstract

Keywords

MoxW1−xSi2 W content Self-propagating high-temperature synthesis Accelerated degradation test Bending strength 

Notes

Acknowledgements

This present Research has been conducted by the Research Grant of Kwangwoon University in 2019. And, this work was supported by the National Research Foundation of Korea (NRF) funded by Korean government (MSIP; Ministry of Science, ICT and Future Planning) (Nos. 2017R1C1B5017013 and 2018R1D1A1B07045295).

References

  1. 1.
    Vasudevan, A.K., Petrovic, J.J.: A comparative overview of molybdenum disilicide composites. Mater. Sci. Eng. A 155, 1–17 (1992)CrossRefGoogle Scholar
  2. 2.
    Boettinger, W.J., Perepezko, J.H., Frankwicz, P.S.: Application of ternary phase diagrams to the development of MoSi2-based materials. Mater. Sci. Eng. A 155, 33–44 (1992)CrossRefGoogle Scholar
  3. 3.
    Mitra, R.: Mechanical behaviour and oxidation resistance of structural silicides. Int. Mater. Rev. 51, 13–64 (2006)CrossRefGoogle Scholar
  4. 4.
    Petrovic, J.J., Vasudevan, A.K.: Key developments in high temperature structural silicides. Mater. Sci. Eng. A 261, 1–5 (1999)CrossRefGoogle Scholar
  5. 5.
    Bhowmik, A., Jones, C.N., Edmonds, I.M., Stone, H.J.: Effect of Mo, Al and Si on the microstructure and mechanical properties of Cr–Cr2Ta based alloys. J. Alloys Compd. 530, 169–177 (2012)CrossRefGoogle Scholar
  6. 6.
    Gras, C., Vrel, D., Gaffet, E., Bernard, F.: Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system. J. Alloys. Compd. 314, 240–250 (2001)CrossRefGoogle Scholar
  7. 7.
    Yanagihara, K., Maruyama, T., Nagata, K.: Effect of third elements on the pesting suppression of Mo–Si–X intermetallics (X = Al, Ta, Ti, Zr and Y). Intermetallics 4, S133–S139 (1996)CrossRefGoogle Scholar
  8. 8.
    Hansson, K., Halvarsson, M., Tang, J.E., Pompe, R., Sundberg, M., Svensson, J.E.: Oxidation behaviour of a MoSi2-based composite in different atmospheres in the low temperature range (400–550 °C). J. Eur. Ceram. Soc. 24, 3559–3573 (2004)CrossRefGoogle Scholar
  9. 9.
    Liu, Y.Q., Shao, G., Tsakiropoulos, P.: On the oxidation behaviour of MoSi2. Intermetallics 9, 125–136 (2001)CrossRefGoogle Scholar
  10. 10.
    Knittel, S., Mathieu, S., Vilasi, M.: Oxidation behaviour of arc-melted and uniaxial hot pressed MoSi2 at 500°C. Intermetallics 18, 2267–2274 (2010)CrossRefGoogle Scholar
  11. 11.
    Xu, J., Wu, H., Li, B.: Synthesis of MoSi2/WSi2 nanocrystalline powder by mechanical assistant combustion synthesis method. Int. J. Refract. Met. Hard Mater. 28, 217–220 (2010)CrossRefGoogle Scholar
  12. 12.
    Yao, Z., Stiglich, J., Sudarshan, T.S.: Molybdenum silicide based materials and their properties. J. Mater. Eng. Perform. 8, 291–304 (1999)CrossRefGoogle Scholar
  13. 13.
    Watanabe, T., Zhang, G.J., Yue, X.M., Zeng, Y., Shobu, K., Bahlawane, N.: Multilayer composites in Al2O3/MoSi2 system. Mater. Chem. Phys. 67, 256–262 (2001)CrossRefGoogle Scholar
  14. 14.
    Yi, D., Li, C.: MoSi2–ZrO2 composites—fabrication, microstructures and properties. Mater. Sci. Eng. A 261, 89–98 (1999)CrossRefGoogle Scholar
  15. 15.
    Manukyan, K.V., Kharatyan, S.L., Blugan, G., Kocher, P., Kuebler, J.: MoSi2–Si3N4 composites: Influence of starting materials and fabrication route on electrical and mechanical properties. J. Eur. Ceram. Soc. 29, 2053–2060 (2009)CrossRefGoogle Scholar
  16. 16.
    Sun, L., Pan, J.: TiC whisker-reinforced MoSi2 matrix composites. Mater. Lett. 51, 270–274 (2001)CrossRefGoogle Scholar
  17. 17.
    Pan, J., Surappa, M.K., Saravanan, R.A., Liu, B.W., Yang, D.M.: Fabrication and characterization of SiC/MoSi2 composites. Mater. Sci. Eng. A 244, 191–198 (1998)CrossRefGoogle Scholar
  18. 18.
    Taleghani, P.R., Bakhshi, S.R., Erfanmanesh, M., Borhani, G.H., Vafaei, R.: Improvement of MoSi2 oxidation resistance via boron addition: fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering. Powder Technol. 254, 241–247 (2014)CrossRefGoogle Scholar
  19. 19.
    Petrovic, J.J.: Toughening strategies for MoSi2-based high temperature structural silicides. Intermetallics 8, 1175–1182 (2000)CrossRefGoogle Scholar
  20. 20.
    Subrahmanyam, J., Mohan Rao, R.: Combustion synthesis of MoSi2WSi2 alloys. Mater. Sci. Eng. A 183, 205–210 (1994)CrossRefGoogle Scholar
  21. 21.
    Mitra, R., Mahajan, Y.R., Prasad, N.E., Chiou, W.A.: Processing microstructure property relationships in reaction hot-pressed MoSi2 and MoSi2/SiCp composite. Mat Sci. Eng. A 225, 105–117 (1997)CrossRefGoogle Scholar
  22. 22.
    Lavernia, E.J.: Evolution of microstructure during spray atomization and deposition. Int. J. Rapid. Solidif. 5, 47–85 (1989)Google Scholar
  23. 23.
    Zakeri, M., Yazdani-Rad, R., Enayati, M.H., Rahimipour, M.R.: Synthesis of nanocrystalline MoSi2 by mechanical alloying. J. Alloys. Compd. 403, 258–261 (2005)CrossRefGoogle Scholar
  24. 24.
    Jeng, Y.L., Lavernia, E.J.: Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557–2571 (1994)CrossRefGoogle Scholar
  25. 25.
    Stoloff, N.S.: An overview of powder processing of silicides and their composites. Mater. Sci. Eng. A 261, 169–180 (1999)CrossRefGoogle Scholar
  26. 26.
    Deevi, S.C., Thadhani, N.N.: Reaction synthesis of high-temperature silicides. Mater. Sci. Eng. A 192–193, 604–611 (1995)CrossRefGoogle Scholar
  27. 27.
    Yeh, C.L., Hsu, W.S.: Preparation of MoB and MoB–MoSi2 composites by combustion synthesis in SHS mode. J. Alloys Compd. 440, 193–198 (2007)CrossRefGoogle Scholar
  28. 28.
    Hasani, S., Panjepour, M., Shamanian, M.: A study of the effect of aluminum on MoSi2 formation by self-propagation high-temperature synthesis. J. Alloys Compd. 502, 80–86 (2010)CrossRefGoogle Scholar
  29. 29.
    Deevi, S.C.: Self-propagating high-temperature synthesis of molybdenum disilicide. J. Mater. Sci. 26, 3343–3353 (1991)CrossRefGoogle Scholar
  30. 30.
    Munir, Z.A.: Synthesis of high temperature materials by self-propagating combustion methods. Am. Ceram. Bull. 67, 342–349 (1988)Google Scholar
  31. 31.
    Fei, G.T., Liu, L., Ding, X.Z., Zhang, L.D., Zheng, Q.Q.: Preparation of nanocrystalline intermetallic compounds WSi2 and MoSi2 by mechanical alloying. J. Alloys Compd. 229, 280–282 (1995)CrossRefGoogle Scholar
  32. 32.
    Zamani, S., Bakhsheshi-Rad, H.R., Kadir, M.R.A., Shafiee, M.R.M.: Synthesis and kinetic study of (Mo, W)Si2–WSi2 nanocomposite by mechanical alloying. J. Alloys Compd. 540, 248–259 (2012)CrossRefGoogle Scholar
  33. 33.
    Seo, Y.S.: Novel non-metallic heat emitter composition, a method for producing a non-metallic heat emitter by using the composition, and a non-metallic heat emitter produced therefrom. KR Patent. No. 10-2013-0043120 (2013)Google Scholar
  34. 34.
    Nouri, A., Hodgson, P.D., Wen, C.: Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy. Mater. Sci. Eng. C 31, 921–928 (2011)CrossRefGoogle Scholar
  35. 35.
    Liu, J., Lin, L., Li, J., Liu, J., Yuan, Y., Ivanov, M., Chen, M., Liu, B., Ge, L., Xie, T., Kou, H., Shi, Y., Pan, Y., Guo, J.: Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics. Ceram. Int. 40, 9841–9851 (2014)CrossRefGoogle Scholar
  36. 36.
    Lee, K.H., Yoon, J.K., Lee, J.K., Doh, J.M., Hong, K.T., Yoon, W.Y.: Growth kinetics of W5Si3 layer in WSi2/W system. Surf. Coat. Technol. 187, 146–153 (2004)CrossRefGoogle Scholar
  37. 37.
    Inui, H., Nakamoto, T., Ishikawa, K., Yamaguchi, M.: Plastic deformation of single crystals of (Mo1-xWx)Si2 with the C11b structure. Mater. Sci. Eng. A 261, 131–138 (1999)CrossRefGoogle Scholar
  38. 38.
    German, R.M.: Sintering Theory and Practice. John Wiley & Sons Inc, New York (1996)Google Scholar
  39. 39.
    Cook, J., Khan, A., Lee, E., Mahapatra, R.: Oxidation of MoSi2-based composites. Mater. Sci. Eng. A 155, 183–198 (1992)CrossRefGoogle Scholar
  40. 40.
    Lohfeld, S., Schütze, M., Bohm, A., Guther, V., Rix, R., Scholl, R.: Oxidation behaviour of particle reinforced MoSi2 composites at temperatures up to 1700°C Part III: oxidation behaviour of optimised MoSi2 composites. Mater. Corros. 56, 250–258 (2005)CrossRefGoogle Scholar
  41. 41.
    Gibala, R., Ghosh, A.K., Van Aken, D.C., Srolovitz, D.J., Basu, A., Chang, H., Mason, D.P., Yang, W.: Mechanical behavior and interface design of MoSi2-based alloys and composites. Mater. Sci. Eng. A 155, 147–158 (1992)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIncheon National UniversityIncheonKorea
  2. 2.Production Development HeadquaterWinner TechnologyGwangjuRepublic of Korea
  3. 3.Department of Electronic Materials EngineeringKwangwoon UniversitySeoulRepublic of Korea
  4. 4.Material & Components Technology CenterKorea Testing LaboratorySeoulRepublic of Korea

Personalised recommendations