Advertisement

Study on Electrochemical Performance of Various Oxides-Coated LiNi0.5Mn1.5O4 Cathode for Lithium Ion Battery

  • Seonggyu Cho
  • Shinho Kim
  • Wonho Kim
  • Seok KimEmail author
Original Article - Nanomaterials
  • 11 Downloads

Abstract

In this study, LiNi0.5Mn1.5O4 was prepared by solid-state synthesis method and MgCO3, Al2O3, SiO2, TiO2 were dry-coated on the surface of LiNi0.5Mn1.5O4. The structure and geometry of pure-LNMO and coated-LNMO were characterized by XRD, SEM, SEM–EDS. Dry coating method was applied and various coating materials were evaluated in terms of the stability study at room/high temperature and electrochemical property. The results of XRD and SEM–EDS demonstrated that MgCO3, Al2O3, SiO2, TiO2 were coated on the LiNi0.5Mn1.5O4 surface without any structural changes. Compared with pure-LNMO, the coated-LNMO shows significant decrease in side-reaction with electrolyte solution at the first cycle of the electrochemical test. In addition, coated-LNMO displays prominent thermal-stability at 25 °C and 55 °C and high c-rate, compared with pure-LNMO. Especially the coating layer of SiO2 inhibits the side-reaction with electrolyte solution induced by initial moisture formation. Therefore, the stability of capacity is significantly improved at the temperature of 55 °C and high c-rate, which are same results with those obtained by the electrochemical impedance spectroscopy results. This study has employed solid-state synthesis and dry coating method for the evaluation of various coated-LNMO materials and demonstrated the possibility to develop new high energy density electrode materials by surface modification.

Graphical Abstract

Keywords

LiNi0.5Mn1.5O4 Cathode Lithium-ion batteries Solid state synthesis Dry coating method 

Notes

Acknowledgements

This research was supported by National University Promotion Program through the Pusan National University of Korea.

References

  1. 1.
    Plichate, E., Salomon, M., Slane, S., Uchiyoma, M., Chua, B., Ebner, W.B.: A rechargeable Li/LixCoO2 Cell. J. Power Source 21(1), 25–31 (1987)Google Scholar
  2. 2.
    Park, J.H., Cho, J.H., Lee, E.H., Kim, J.M., Lee, S.Y.: Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries. J. Power Source 244(15), 442–449 (2013)Google Scholar
  3. 3.
    Liu, S., Xiong, L., He, C.: Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J. Power Source 261(1), 285–291 (2014)Google Scholar
  4. 4.
    Kondrakov, O., Schmidt, A., Xu, J., Gebwein, H., Monig, R., Hartmann, R., Sommer, H., Brezesinski, T., Janek, J.: Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. J. Phys. Chem. C 121(6), 3286–3294 (2017)Google Scholar
  5. 5.
    Zeng, L.Z., Xu, Q.J., Liu, M.S., Jin, X.: Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries. Solid State Ionics 249–250(1), 134–138 (2013)Google Scholar
  6. 6.
    Megahed, S., Scrosati, B.: Lithium-ion rechargeable batteries. J. Power Sources 51(1–2), 79–104 (1994)Google Scholar
  7. 7.
    Tarascon, J.M., Guyomard, B.: Li Metal‐Free Rechargeable Batteries Based on Li1 + xMn2 O 4 Cathodes  ( 0 ≤ x ≤ 1 )  and Carbon Anodes. J. Electrochem. Soc. 138(10), 2864–2868 (1991)Google Scholar
  8. 8.
    Wakihara, M., Li, G., Ikuta, H.: In: Wakihara, M., Ymamoto, O. (eds.) Lithium Ion Batteries, pp. 26–47. Wiley-Vchverlag GmbH, Weinheim (1998)Google Scholar
  9. 9.
    Jang, D.H., Shin, Y.J., Oh, S.M.: Dissolution of spinel oxides and capacity losses in 4 V Li / LixMn2 O 4 cells. J. Electrochem. Soc. 143(7), 2204–2211 (1996)Google Scholar
  10. 10.
    Inoue, T., Sano, M.: An Investigation of capacity fading of manganese spinels stored at elevated temperature. J. Electrochem. Soc. 145(11), 3704–3707 (1998)Google Scholar
  11. 11.
    Xia, Y., Zhou, Y., Yoshio, M.: Capacity fading on cycling of 4 V Li / LiMn2 O 4 cells. J. Electrochem. Soc. 144(8), 2593–2600 (1997)Google Scholar
  12. 12.
    Jang, D.H., Oh, S.M.: Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li / LixMn2 O 4 rechargeable cells. J. Electrochem. Soc. 144(10), 3342–3348 (1997)Google Scholar
  13. 13.
    Taackeray, M.M., Shao-Horn, Y., Kahian, A.J., Kepler, Keith D., Skinner, E., Vaughey, J.T., Hackney, S.A.: Structural fatigue in spinel electrodes in high voltage  ( 4 V  )  Li / LixMn2 O 4 cells. Electrochem. Solid-State Lett. 1(1), 7–9 (1998)Google Scholar
  14. 14.
    Gummow, R.J., de Kock, A., Thackeray, M.M.: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69(1), 59–67 (1994)Google Scholar
  15. 15.
    Aoshima, T., Okahara, K., Kiyohara, C., Shizuka, K.: Mechanisms of manganese spinels dissolution and capacity fade at high temperature. J. Power Sources 97–98, 377–380 (2001)Google Scholar
  16. 16.
    Arora, P., Popov, B.N., White, R.E.: Electrochemical investigations of cobalt-doped LiMn2 O 4 as cathode material for lithium-ion batteries. J. Electrochem. Soc. 145(3), 807–815 (1998)Google Scholar
  17. 17.
    Gnanaraj, J.S., Pol, V.G., Gedanken, A., Aurbach, D.: Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochem. Commun. 5(11), 940–945 (2003)Google Scholar
  18. 18.
    Park, Y.J., Kim, J.G., Kim, M.K., Chung, H.T., Um, W.S., Kim, M.H., Kim, H.G.: Fabrication of LiMn2O4 thin films by sol–gel method for cathode materials of microbattery. J. Power Sources 76(1), 41–47 (1998)Google Scholar
  19. 19.
    Xia, Y., Sakai, T., Fujieda, T., Yang, X.Q., Sun, X., Ma, Z.F., McBreen, J., Yoshio, M.: Correlating Capacity Fading and Structural Changes in Li1 + yMn2 − y O 4 − δ Spinel Cathode Materials: A Systematic Study on the Effects of Li/Mn Ratio and Oxygen Deficiency. J. Electrochem. Soc. 148(7), A723–A729 (2001)Google Scholar
  20. 20.
    Liu, J., Manthiram, A.: Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J. Phys. Chem. C 113(33), 15073–15079 (2009)Google Scholar
  21. 21.
    Shigemura, H., Sakaebe, H., Kageyama, H., Kobayahsi, H., West, A.R., Kanno, R., Morimoto, S., Nasu, S., Tabuchi, M.: Structure and electrochemical properties of LiFexMn2 − x O 4  ( 0 ⩽ x ⩽ 0.5 )  spinel as 5 V electrode material for lithium batteries. J. Electrochem. Soc. 148(7), A730–A736 (2001)Google Scholar
  22. 22.
    Kawai, H., Nagata, M., Tukamoto, H., West, A.R.: A new lithium cathode LiCoMnO4: toward practical 5 V  lithium batteries. Electrochem. Solid-State Lett. 1(5), 212–214 (1998)Google Scholar
  23. 23.
    Ein-Eil, Y., Howard, W.F., Lu, S.H., Mukerjee, S., McBreen, J., Vaughey, J.T., Thackeray, M.M.: LiMn2 − xCux O 4 spinels (0.1 ⩽ x ⩽ 0.5): a new Class of 5 V cathode materials for Li batteries. J. Electrochem. Soc. 145(4), 1238–1244 (1998)Google Scholar
  24. 24.
    Ein-Eil, Y., Vaughey, J.T., Thackeray, M.M., Mukerjee, S., Yang, X.Q., McBreen, J.: LiNixCu0.5 − xMn1.5 O 4 spinel electrodes, superior high‐potential cathode materials for Li batteries: I. Electrochemical and structural studies. J. Electrochem. Soc. 146(3), 908–913 (1999)Google Scholar
  25. 25.
    Ellis, B.L., Lee, K.T., Nazar, L.F.: Positive electrode materials for Li-Ion and Li-batteries. Chem. Mater. 22(3), 691–714 (2010)Google Scholar
  26. 26.
    Santhanam, R., Rambabu, B.: Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 17(1), 5442–5451 (2010)Google Scholar
  27. 27.
    Zhong, Q., Bonakdarpour, A., Zhang, M., Gao, Y., Dahn, J.R.: Synthesis and electrochemistry of LiNixMn2 − x O 4. J. Electrochem. Soc. 144(1), 205–213 (1997)Google Scholar
  28. 28.
    Ohzuku, T., Takeda, S., Iwanage, M.: Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J. Power Sources 81–82, 90–94 (1999)Google Scholar
  29. 29.
    Guyomard, D., Tarascon, J.M.: High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries. J. Power Sources 54(1), 92–98 (1995)Google Scholar
  30. 30.
    Pieczonka, N.P.W., Liu, Z., Lu, P., Olson, K.L., Moote, J., Powell, B.R., Kim, J.H.: Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 117(31), 15947–15957 (2013)Google Scholar
  31. 31.
    Yang, L., Ravdel, B., Lucht, B.L.: Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 13(8), A95–A97 (2010)Google Scholar
  32. 32.
    Yoon, T., Park, S., Mun, J., Ryu, J.H., Choi, W., Kang, Y.S., Park, J.H., Oh, S.M.: Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. J. Power Sources 215(1), 312–316 (2012)Google Scholar
  33. 33.
    Oh, G., Hirayama, M., Kwon, O., Suzuki, K., Kanno, R.: Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Jpn. Chem. Mater. 28(8), 2634–2640 (2016)Google Scholar
  34. 34.
    Yubuchi, S., Ito, Y., Matsuyama, T., Hayashi, A., Tatsumisago, M.: 5 V class LiNiMnO positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ion. 285, 79–82 (2016)Google Scholar
  35. 35.
    Hassoun, J., Verrelli, R., Reale, P., Panero, S., Mariotto, G., Greenbaum, S., Scrosati, B.: A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. J. Power Sources 229(1), 117–122 (2013)Google Scholar
  36. 36.
    Kim, J.W., Kim, D.H., Oh, D.Y., Lee, H., Kim, J.H., Lee, J.H., Jung, Y.S.: Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J. Power Sources 274(15), 1254–1262 (2015)Google Scholar
  37. 37.
    Xing, W., Garrett, J.B., Krysiak, M., Kelly, J.: High performance spinel Li-Ion battery cathode development. ECS Trans. 53(30), 111–119 (2013)Google Scholar
  38. 38.
    Yan, P., Zheng, J., Zhang, X., Xu, R., Amine, K., Xiao, J., Zhang, J.G., Wang, C.M.: Atomic to nanoscale investigation of functionalities of an Al2O3 coating layer on a cathode for enhanced battery performance. Chem. Mater. 28(3), 857–863 (2016)Google Scholar
  39. 39.
    Lai, F., Zhang, X., Wang, H., Hu, S., Wu, X., Wu, Q., Huang, Y., He, Z., Li, Q.: Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces. 8(33), 21656–21665 (2016)Google Scholar
  40. 40.
    Sun, P., Ma, Y., Zhai, T., Li, H.: High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochim. Acta 191(10), 237–246 (2016)Google Scholar
  41. 41.
    Sclar, H., Haik, O., Menachem, T., Grinblat, J., Leifer, N., Meitav, A., Luski, S., Aurbach, D.: The effect of ZnO and MgO coatings by a Sono-chemical method, on the stability of LiMn1.5Ni0.5O4 as a cathode material for 5 V Li-Ion batteries. J. Electrochem. Soc. 159(3), A228–A237 (2012)Google Scholar
  42. 42.
    Alva, G., Kim, C., Yi, T., Cook, J.B., Xu, L., Nolis, G.M., Cabana, J.: Surface chemistry consequences of Mg-based coatings on LiNi0.5Mn1.5O4 electrode materials upon operation at high voltage. J. Phys. Chem. C 118(20), 10596–10605 (2014)Google Scholar
  43. 43.
    Zhao, Y., Lv, Z., Xu, T., Li, J.: SiO2 coated Li1.2Ni0.2Mn0.6O2 as cathode materials with rate performance, HF scavenging and thermal properties for Li-ion batteries. J. Alloys Compd. 715(25), 105–111 (2017)Google Scholar
  44. 44.
    Yang, S., Ren, W., Chen, J.: Li4SiO4-coated LiNi0.5Mn1.5O4 as the high performance cathode materials for lithium-ion batteries. Front. Energy 11(3), 374–382 (2017)Google Scholar
  45. 45.
    Cho, H.M., Chen, M.V., MacRae, A.C., Meng, Y.S.: Effect of surface modification on nano-structured LiNi0.5Mn1.5O4 spinel materials. ACS Appl. Mater. Interfaces 7(30), 16231–16239 (2015)Google Scholar
  46. 46.
    Wang, L., Chen, D., Wang, J., Liu, G., Wu, W., Liang, G.: Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method. Powder Technol. 292, 203–209 (2016)Google Scholar
  47. 47.
    Cabana, J., Casas-Cabanas, M., Omenya, F.O., Chernova, N.A., Zeng, D., Whittingham, M.S., Grey, C.P.: Composition-structure relationships in the Li-Ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 24(15), 2952–2964 (2012)Google Scholar
  48. 48.
    Liu, D., Zhu, W., Trottier, J., Gagnon, C., Barray, F., Guerfi, A., Mauger, A., Groult, H., Julien, C.M., Goodenough, J.B., Zaghib, K.: Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv. 4(1), 154–167 (2014)Google Scholar
  49. 49.
    Kim, J.H., Myung, S.T., Yoon, C.S., Kang, S.G., Sun, Y.K.: Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:  Fdm and P4332. Chem. Mater. 16(5), 906–914 (2004)Google Scholar
  50. 50.
    Kraytsberg, A., Eli, Y.E.: Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922–939 (2012)Google Scholar
  51. 51.
    Manthiram, A., Chemelewski, K., Lee, E.S.: A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7, 1339–1350 (2014)Google Scholar
  52. 52.
    Li, Y.D., Zhao, S.X., Nan, C.W., Li, B.H.: Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. J. Alloy. Compd. 509(3), 957–960 (2011)Google Scholar
  53. 53.
    Levi, M.D., Aurbach, D.: Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J. Phys. Chem. B 101(23), 4630–4640 (1997)Google Scholar
  54. 54.
    Gaberscek, M., Moskon, J., Erjavec, B., Dominko, R., Jamnik, J.: The importance of interphase contacts in Li Ion electrodes: the meaning of the high-frequency impedance arc. Electrochem. Solid State Lett. 11(10), A170–A174 (2008)Google Scholar
  55. 55.
    Bard, J, Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. In: Electrochemical Methods: Fundamentals and Applications, second ed. Wiley (2001)Google Scholar
  56. 56.
    Levi, M.D., Aurbach, D.: Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 101(23), 4641–4647 (1997)Google Scholar
  57. 57.
    Jiang, S., Zhao, B., Chen, Y., Cai, R., Shao, Z.: Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. J. Power Sources 238, 356–365 (2013)Google Scholar
  58. 58.
    Kim, J., Kim, S.: Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim. Acta 119, 11–15 (2014)Google Scholar
  59. 59.
    Kim, J., Kim, S.: Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. App. Surf. Sci. 295, 31–37 (2014)Google Scholar
  60. 60.
    Park, S., Kim, S.: Effect of carbon blacks filler addition on electrochemical behaviors of Co3O4/graphene nanosheets as a supercapacitor electrodes. Electrochim. Acta 89, 516–522 (2013)Google Scholar
  61. 61.
    Li, W., Lucht, B.L.: Lithium-Ion Batteries: thermal Reactions of Electrolyte with the Surface of Metal Oxide Cathode Particles. J. Electrochem. Soc. 153(8), A1617–A1625 (2006)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Seonggyu Cho
    • 1
    • 2
  • Shinho Kim
    • 1
  • Wonho Kim
    • 2
  • Seok Kim
    • 2
    Email author
  1. 1.Secondary Battery R&D Center, DRB Holdings Co.BusanRepublic of Korea
  2. 2.Department of Chemical and Biochemical EngineeringPusan National UniversityBusanRepublic of Korea

Personalised recommendations