Electronic Materials Letters

, Volume 15, Issue 3, pp 267–277 | Cite as

Conformable, Thin, and Dry Electrode for Electrocardiography Using Composite of Silver Nanowires and Polyvinyl Butyral

  • Su Bin Choi
  • Min Suk Oh
  • Chul Jong Han
  • Jae-Wook Kang
  • Cheul-Ro Lee
  • Jinseok LeeEmail author
  • Jong-Woong KimEmail author
Original Article - Electronics, Magnetics and Photonics


Development of a thin and dry electrode for electrocardiography (ECG) is essential in order to prevent skin irritation, allergic reactions from electrolytic gel, and motion artifacts caused by relative motion between the electrodes and the skin. In this study, we have developed a composite electrode made from Ag nanowires (AgNWs) and polyvinyl butyral (PVB), prepared by inverted layer processing (ILP). The initial composite electrodes were mechanically stable, flexible, and transparent; however, most of the NWs were located beneath the surface of the PVB such that few conductive pathways were exposed and available to contact the skin. In order to resolve this issue, prior to transferring the AgNWs from the temporary glass substrate to the PVB, we irradiated the NWs with intensive pulsed light. This irradiation induced plasmonic heating of the AgNWs, which caused the NWs to sink towards the glass and form a dense layer on the temporary substrate. Subsequent ILP resulted in the fabrication of an AgNWs/PVB composite electrode that demonstrated significant surface coverage of conductive pathways available for stable electrical contact with skin. The resultant composite electrode is an improved ECG electrode that exhibits fewer motion artifacts compared to conventional Ag/AgCl-based wet electrodes since it is both dry and conformable.

Graphical Abstract


Ag nanowires Conformal electrode Electrocardiography Intense pulsed light Composite 



This work was supported by a National Research Foundation of Korea (NRF) Grant (Numbers 2015R1A4A1042417, 2018R1D1A1B07047386 and 2016M3A7B4910) funded by the Korean government (MSIP).

Supplementary material

13391_2019_125_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1872 kb)


  1. 1.
    Koo, J.H., Jeong, S., Shim, H.J., Son, D., Kim, J., Kim, D.C., Choi, S., Hong, J.I., Kim, D.H.: Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017)CrossRefGoogle Scholar
  2. 2.
    Sinha, S.K., Noh, Y., Reljin, N., Treich, G.M., Hajeb-Mohammadalipour, S., Guo, Y., Chon, K.H., Sotzing, G.A.: Screen-printed PEDOT:PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl. Mater. Interfaces 9, 37524–37528 (2017)CrossRefGoogle Scholar
  3. 3.
    Choi, S., Lee, H., Ghaffari, R., Hyeon, T., Kim, D.H.: Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016)CrossRefGoogle Scholar
  4. 4.
    Campana, A., Cramer, T., Simon, D.T., Berggren, M., Biscarini, F.: Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014)CrossRefGoogle Scholar
  5. 5.
    Choi, C., Choi, M.K., Hyeon, T., Kim, D.H.: Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2, 1006–1017 (2016)CrossRefGoogle Scholar
  6. 6.
    Kim, T., Park, J., Sohn, J., Cho, D., Jeon, S.: Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10, 4770–4778 (2016)CrossRefGoogle Scholar
  7. 7.
    Liu, B., Luo, Z., Zhang, W., Tu, Q., Jin, X.: Silver nanowire-composite electrodes for long-term electrocardiogram measurements. Sens. Actuators A Phys. 247, 459–464 (2016)CrossRefGoogle Scholar
  8. 8.
    Takamatsu, S., Lonjaret, T., Crisp, D., Badier, J.M., Malliaras, G.G., Ismailova, E.: Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Sci. Rep. 5, 15003 (2015)CrossRefGoogle Scholar
  9. 9.
    Paul, G., Torah, R., Beeby, S., Tudor, J.: Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing. Sens. Actuators A Phys. 221, 60–66 (2015)CrossRefGoogle Scholar
  10. 10.
    Salvo, P., Raedt, R., Carrette, E., Schaubroeck, D., Vanfleteren, J., Cardon, L.: A 3D printed dry electrode for ECG/EEG recording. Sens. Actuators A Phys. 174, 96–102 (2012)CrossRefGoogle Scholar
  11. 11.
    Lee, S.M., Byeon, J.H., Lee, H.J., Baek, D.H., Lee, K.H., Hong, J.S., Lee, S.H.: Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep. 4, 6074 (2014)CrossRefGoogle Scholar
  12. 12.
    Celik, N., Manivannan, N., Strudwick, A., Balachandran, W.: Graphene-enabled electrodes for electrocardiogram monitoring. Nanomaterials 6, 156 (2016)CrossRefGoogle Scholar
  13. 13.
    Bihar, E., Roberts, T., Saadaoui, M., Hervé, T., De Graaf, J.B., Malliaras, G.G.: Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography. Adv. Healthc. Mater. 6, 1601167 (2017)CrossRefGoogle Scholar
  14. 14.
    Myers, A.C., Huang, H., Zhu, Y.: Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 5, 11627–11632 (2015)CrossRefGoogle Scholar
  15. 15.
    Yao, S., Myers, A., Malhotra, A., Lin, F., Bozkurt, A., Muth, J.F., Zhu, Y.: A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthc. Mater. 6, 1601159 (2017)CrossRefGoogle Scholar
  16. 16.
    Kim, J.H., Kim, S.R., Kim, H.J., Kim, Y.C., Park, J.W.: Highly conformable, transparent electrodes for epidermal electronics. Nano Lett. 18, 4531–4540 (2018)CrossRefGoogle Scholar
  17. 17.
    Cui, Z., Han, Y., Huang, Q., Dong, J., Zhu, Y.: Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 10, 6806–6811 (2018)CrossRefGoogle Scholar
  18. 18.
    Lee, E., Kim, I., Liu, H., Cho, G.: Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers Polym. 18, 1749–1753 (2017)CrossRefGoogle Scholar
  19. 19.
    Kim, D.-H., Yu, K.-C., Kim, Y., Kim, J.-W.: Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea. ACS Appl. Mater. Interfaces 7, 15214–15222 (2015)CrossRefGoogle Scholar
  20. 20.
    Jun, S., Han, C.J., Kim, Y., Ju, B.-K., Kim, J.-W.: A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor. J. Mater. Chem. A. 5, 3221–3229 (2017)CrossRefGoogle Scholar
  21. 21.
    Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q.: Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013)CrossRefGoogle Scholar
  22. 22.
    Kim, Y., Ryu, T.I., Ok, K.-H., Kwak, M.-G., Park, S., Park, N.-G., Han, C.J., Kim, B.S., Ko, M.J., Son, H.J., Kim, J.-W.: Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015)CrossRefGoogle Scholar
  23. 23.
    Govorov, A.O., Richardson, H.H.: Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007)CrossRefGoogle Scholar
  24. 24.
    Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Christoforo, M.G., Cui, Y., McGehee, M.D., Brongersma, M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)CrossRefGoogle Scholar
  25. 25.
    Song, C.H., Han, C.J., Ju, B.K., Kim, J.W.: Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices. ACS Appl. Mater. Interfaces 8, 480–489 (2016)CrossRefGoogle Scholar
  26. 26.
    Shacham-Diamand, Y., Osaka, T., Okinaka, Y., Sugiyama, A., Dubin, V.: 30 years of electroless plating for semiconductor and polymer micro-systems. Microelectron. Eng. 132, 35–45 (2015)CrossRefGoogle Scholar
  27. 27.
    Hwang, B., An, Y., Lee, H., Lee, E., Becker, S., Kim, Y.H., Kim, H.: Highly flexible and transparent Ag nanowire electrode encapsulated with ultra-thin Al2O3: thermal, ambient, and mechanical stabilities. Sci. Rep. 7, 41336 (2017)CrossRefGoogle Scholar
  28. 28.
    Kim, R.H., Kim, H.J., Bae, I., Hwang, S.K., Velusamy, D.B., Cho, S.M., Takaishi, K., Muto, T., Hashizume, D., Uchiyama, M., André, P., Mathevet, F., Heinrich, B., Aoyama, T., Kim, D.E., Lee, H., Ribierre, J.C., Park, C.: Non-volatile organic memory with sub-millimetre bending radius. Nat. Commun. 5, 3583 (2014)CrossRefGoogle Scholar
  29. 29.
    Kim, W.K., Lee, S., Lee, D.H., Park, I.H., Bae, J.S., Lee, T.W., Kim, J.Y., Park, J.H., Cho, Y.C., Cho, C.R., Jeong, S.Y.: Cu mesh for flexible transparent conductive electrodes. Sci. Rep. 5, 10715 (2015)CrossRefGoogle Scholar
  30. 30.
    Hwang, J., Shim, Y., Yoon, S.M., Lee, S.H., Park, S.H.: Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: theoretical and experimental studies. RSC Adv. 6, 30972–30977 (2016)CrossRefGoogle Scholar
  31. 31.
    Kim, K.S., Kim, S.O., Han, C.J., Kim, D.U., Kim, J.S., Yu, Y.T., Lee, C.R., Kim, J.W.: Revisiting the thickness reduction approach for near-foldable capacitive touch sensors based on a single layer of Ag nanowire-polymer composite structure. Compos. Sci. Technol. 165, 58–65 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Advanced Materials EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Display Materials and Components Research CenterKorea Electronics Technology InstituteSeongnamRepublic of Korea
  3. 3.School of Flexible and Printable ElectronicsChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Department of Biomedical EngineeringWonkwang University College of MedicineIksanRepublic of Korea

Personalised recommendations