Advertisement

Electronic Materials Letters

, Volume 15, Issue 1, pp 111–118 | Cite as

Large Tuning of Surface Plasmon Resonance of Au–Fullerene Nanocomposite

  • Ritu Vishnoi
  • Satakshi Gupta
  • Ganesh D. Sharma
  • Rahul SinghalEmail author
Original Article – Nanomaterials
  • 39 Downloads

Abstract

Gold–fullerene C60 nanocomposite thin films prepared by thermal co-deposition were irradiated by a high energy beam of 120 MeV Ag ions using Pelletron accelerator. Absorption spectra revealed a large and progressive tuning of surface plasmon resonance wavelength when the films were irradiated at higher fluences. This blue shift (~ 119 nm) can be ascribed to the evolution of fullerene into amorphous carbon upon bombardment of high energy ions at higher fluences and causes a shift in refractive index of the matrix. Raman spectra ascertained this transformation with the presence of two bands: D and G band. Ion irradiation also leads to the formation of bigger size Au nanoparticles with well defined spherical shape at higher fluences as confirmed by TEM. XRD results demonstrated decrease in FWHM of diffraction peaks indicating the increase in particle size which is in agreement with the result obtained from TEM analysis.

Graphical Abstract

Keywords

Gold nanoparticles Ion irradiation Metal–fullerene nanocomposite Optical properties 

Notes

Acknowledgements

The authors are grateful to Pelletron group at IUAC, New Delhi for providing a stable beam. Materials Research Centre (MRC), MNIT, Jaipur is highly acknowledged for providing characterization facilities. R.Singhal and Satakshi Gupta are also thankful to CSIR New Delhi (Ref: 03(1408)/17/EMR-II) and DST New Delhi (EMR/2016/005208) for giving financial support to carry out the experimental research work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Darbha, G.K., Singh, A.K., Rai, U.S., Yu, E., Yu, H., Chandra Ray, P.: Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130(25), 8038–8043 (2008)CrossRefGoogle Scholar
  2. 2.
    Tessier, P.M., Velev, O.D., Kalambur, A.T., Rabolt, J.F., Lenhoff, A.M., Kaler, E.W.: Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 122(39), 9554–9555 (2000)CrossRefGoogle Scholar
  3. 3.
    Reynolds, R.A., Mirkin, C.A., Letsinger, R.L.: A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method. Pure Appl. Chem. 72(1–2), 229–235 (2000)CrossRefGoogle Scholar
  4. 4.
    Meldrum, A., Boatner, L.A., White, C.W.: Nanocomposites formed by ion implantation: recent developments and future opportunities. Nucl. Instrum. Methods Phys. Res. Sect. B 178(1–4), 7–16 (2001)CrossRefGoogle Scholar
  5. 5.
    Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A., Atwater, H.A.: Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)CrossRefGoogle Scholar
  6. 6.
    Njoki, P.N., Lim, I.I.S., Mott, D., Park, H.Y., Khan, B., Mishra, S., Zhong, C.J.: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111(40), 14664–14669 (2007)CrossRefGoogle Scholar
  7. 7.
    Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Xia, Y.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094 (2006)CrossRefGoogle Scholar
  8. 8.
    Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters, vol. 25. Springer, Berlin (2013)Google Scholar
  9. 9.
    Yadav, B.C., Kumar, R.: Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2(1), 15–24 (2008)Google Scholar
  10. 10.
    Singhal, R., Vishnoi, R., Sharma, P., Inani, H., Sharma, G.D., Pivin, J.C.: Thermally induced tuning of SPR of metal–fullerene Ag (26%)–C70 nanocomposite. Surf. Coat. Technol. 324, 361–367 (2017)CrossRefGoogle Scholar
  11. 11.
    Blom, P.W., Mihailetchi, V.D., Koster, L.J.A., Markov, D.E.: Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19(12), 1551–1566 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, K.M., Wu, K., Chen, Y., Jia, Y.Q., Jin, S.X., Li, C.Y., Zhou, X.H.: Heterojunctions of solid C70 and crystalline silicon: rectifying properties and barrier heights. Appl. Phys. Lett. 67(12), 1683–1685 (1995)CrossRefGoogle Scholar
  13. 13.
    Roushani, M., Shahdost-fard, F., Azadbakht, A.: Using Au@ nano-C60 nanocomposite as an enhanced sensing platform in modeling a TNT aptasensor. Anal. Biochem. 534, 78–85 (2017)CrossRefGoogle Scholar
  14. 14.
    Ko, J.W., Li, J., Ko, W.B.: Preparation of C60 fullerene nanowhisker-gold nanoparticle composites and reduction of 4-nitrophenol through catalysis. Nanomater. Nanotechnol. 5, 37 (2015)CrossRefGoogle Scholar
  15. 15.
    Hasobe, T., Imahori, H., Kamat, P.V., Ahn, T.K., Kim, S.K., Kim, D., Fukuzumi, S.: Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127(4), 1216–1228 (2005)CrossRefGoogle Scholar
  16. 16.
    Singhal, R., Gupta, S., Vishnoi, R., Sharma, G.D.: Synthesis and modification of Cu–C70 nanocomposite for plasmonic applications. Appl. Surf. Sci. 466, 615–627 (2018)CrossRefGoogle Scholar
  17. 17.
    Singhal, R., Vishnoi, R., Inani, H., Sharma, P., Venkataratnam, K.K., Avasthi, D.K.: Investigations on the thermal stability of fullerene-based (Ag–C70) nanocomposite thin films. Plasmonics 12(6), 1701–1708 (2017)CrossRefGoogle Scholar
  18. 18.
    Singhal, R., Gupta, S., Vishnoi, R., Aggarwal, S., Sharma, G.D., Sharma, A., Ojha, S.: Optical properties of Cu–C70 nanocomposite under low energy ion irradiation. Mater. Res. Express 5(3), 035044 (2018)CrossRefGoogle Scholar
  19. 19.
    Singhal, R., Bhardwaj, J., Vishnoi, R., Aggarwal, S., Sharma, A.K., Sharma, G.D.: Low energy ion irradiation induced SPR of Cu–fullerene C70 nanocomposite thin films. J. Alloys Compd. 767, 733–744 (2018)CrossRefGoogle Scholar
  20. 20.
    Singhal, R., Agarwal, D.C., Mishra, Y.K., Mohapatra, S., Avasthi, D.K., Chawla, A.K., Pivin, J.C.: Swift heavy ion induced modifications of optical and microstructural properties of silver–fullerene C60 nanocomposite. Nucl. Instrum. Methods Phys. Res. Sect. B 267(8–9), 1349–1352 (2009)CrossRefGoogle Scholar
  21. 21.
    Sharma, P., Singhal, R., Vishnoi, R., Agarwal, D.C., Banerjee, M.K., Chand, S., Avasthi, D.K.: Effect of Ag ion implantation on SPR of Cu–C60 nanocomposite thin film. Plasmonics 13, 1–11 (2017)Google Scholar
  22. 22.
    Inani, H., Singhal, R., Sharma, P., Vishnoi, R., Ojha, S., Chand, S., Sharma, G.D.: Electronic excitation induced modifications of structural, electrical and optical properties of Cu–C60 nanocomposite thin films. Nucl. Instrum. Methods Phys. Res. Sect. B 407, 73–79 (2017)CrossRefGoogle Scholar
  23. 23.
    Inani, H., Singhal, R., Sharma, P., Vishnoi, R., Aggarwal, S., Sharma, G.D.: Effect of low fluence radiation on nanocomposite thin films of Cu nanoparticles embedded in fullerene C60. Vacuum 142, 5–12 (2017)CrossRefGoogle Scholar
  24. 24.
    Singhal, R., Sharma, P., Vishnoi, R., Avasthi, D.K.: Synthesis and characterizations of Au–C60 nanocomposite. J. Alloys Compd. 696, 9–15 (2017)CrossRefGoogle Scholar
  25. 25.
    Singhal, R., Vishnoi, R., Sharma, P., Sharma, G.D., Chand, S., Kanjilal, D., Pivin, J.C.: Synthesis, characterization and thermally induced structural transformation of Au–C70 nanocomposite thin films. Vacuum 142, 146–153 (2017)CrossRefGoogle Scholar
  26. 26.
    Singhal, R., Agarwal, D.C., Mishra, Y.K., Singh, F., Pivin, J.C., Chandra, R., Avasthi, D.K.: Electronic excitation induced tuning of surface plasmon resonance of Ag nanoparticles in fullerene C70 matrix. J. Phys. D Appl. Phys. 42(15), 155103 (2009)CrossRefGoogle Scholar
  27. 27.
    Schettino, V., Pagliai, M., Ciabini, L., Cardini, G.: The vibrational spectrum of fullerene C60. J. Phys. Chem. A 105(50), 11192–11196 (2001)CrossRefGoogle Scholar
  28. 28.
    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095 (2000)CrossRefGoogle Scholar
  29. 29.
    Garnett, J.M.: VII. Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos. Trans. R. Soc. Lond. A 205(387–401), 237–288 (1906)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Ritu Vishnoi
    • 1
  • Satakshi Gupta
    • 1
  • Ganesh D. Sharma
    • 2
  • Rahul Singhal
    • 1
  1. 1.Department of PhysicsMalaviya National Institute of Technology JaipurJaipurIndia
  2. 2.Department of PhysicsThe LNM Institute of Information TechnologyJamdoli, JaipurIndia

Personalised recommendations