Electronic Materials Letters

, Volume 15, Issue 1, pp 7–17 | Cite as

Fabrication of Stainless Steel Metal Mask with Electrochemical Fabrication Method and Its Improvement in Dimensional Uniformity

  • Heon-Yul Ryu
  • Myeong-Jun Kim
  • Nagendra Prasad Yerriboina
  • Ramanathan Srinivasan
  • Jin-Goo ParkEmail author
Original Article - Chemistry and Biomaterials


This study presents an efficient method for fabricating a stainless-steel metal mask with through hole arrays. The electrochemical interactions between the electrolyte and metal surface were analyzed by linear scan voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Dry film resist patterning was utilized to apply a protective layer to the substrate for selective electrochemical etching. Through hole arrays were fabricated by electrochemical fabrication, which entails immersing two electrodes in an electrolyte and applying current. To improve the dimensional uniformity of the resulting through hole arrays, ammonium dodecyl sulfate (ADS) was added to the electrolyte and an insulation shield was placed in front of the substrate. Confocal 3D microscopy and optical microscopy were used to evaluate the dimensional uniformity and the depth and radius of hole patterns, respectively. LSV and EIS results showed that the stainless-steel surface was passivated at a low potential and that the passivation layer was broken down at high potential. Adding ADS and the insulation shield improved the dimensional uniformity of the resulting through hole arrays.

Graphical Abstract


Electrochemical fabrication Metal mask Uniformity Surfactants Insulation shield 



This research was supported by a Grant (HYU-2016-G) from the Post-Doc Recruitment Program funded by Hanyang University.


  1. 1.
    Bai, J.G., Zhang, Z.Z., Calata, J.N., Lu, G.Q.: Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29(3), 589–593 (2006). CrossRefGoogle Scholar
  2. 2.
    Sun, S.-S., Zhang, C., Ledbetter, A., Choi, S., Seo, K., Bonner, C.E., Drees, M., Sariciftci, N.S.: Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach. Appl. Phys. Lett. 90(4), 043117 (2007). CrossRefGoogle Scholar
  3. 3.
    Bhat, S.N., Rao, G.A., Dinesh, N.S., Baliga, B.N.: Photo-defined electrically assisted etching method for metal stencil fabrication. IEEE Trans. Compon. Packag. Manuf. Technol. 1(7), 1116–1121 (2011). CrossRefGoogle Scholar
  4. 4.
    Yi, S.M., Jin, S.H., Lee, J.D., Chu, C.N.: Fabrication of a high-aspect-ratio stainless steel shadow mask and its application to pentacene thin-film transistors. J. Micromech. Microeng. 15(2), 263–269 (2005). CrossRefGoogle Scholar
  5. 5.
    Cotter, J., Yao, G., Eggleston, B.: Laser-formed stencils for printed silicon solar cells. In: Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-First IEEE, 2005, pp. 1169–1172. IEEEGoogle Scholar
  6. 6.
    Li, L., Thompson, P.: Stencil printing process development for flip chip interconnect. IEEE Trans. Electron. Packag. Manuf. 23(3), 165–170 (2000)CrossRefGoogle Scholar
  7. 7.
    Cho, M.-S., Cho, S.-H., Cha, N.-G., Hyun-Woo, L., Park, J.-G., Jo, J.-S.: Characterization of sus molds for light guide plates by electro-chemical fabrication (ECF) method. Electron. Mater. Lett. 3(2), 93–96 (2007)Google Scholar
  8. 8.
    Cho, M.-S., Lim, H.-W., Lee, C.S., Cho, B.-K., Park, J.-G.: Fabrication of stainless steel mold using electrochemical fabrication method for microfluidic biochip. Jpn. J. Appl. Phys. 47(6S), 5217 (2008)CrossRefGoogle Scholar
  9. 9.
    Rosset, E., Datta, M., Landolt, D.: Electrochemical dissolution of stainless steels in flow channel cells with and without photoresist masks. J. Appl. Electrochem. 20(1), 69–76 (1990)CrossRefGoogle Scholar
  10. 10.
    Datta, M.: Fabrication of an array of precision nozzles by through-mask electrochemical micromachining. J. Electrochem. Soc. 142(11), 3801–3805 (1995)CrossRefGoogle Scholar
  11. 11.
    McCrabb, H., Taylor, E.J., Lozano-Morales, A., Shimpalee, S., Inman, M., Van Zee, J.W.: Through-mask electroetching for fabrication of metal bipolar plate gas flow field channels. ECS Trans. 33(1), 991–1006 (2010)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Qu, N., Li, H.: Improvement of dimensional uniformity on micro-dimple arrays generated by electrochemical micro-machining with an auxiliary electrode. Int. J. Adv. Manuf. Technol. 80(9–12), 1577–1585 (2015)CrossRefGoogle Scholar
  13. 13.
    Jiang, L.-T., Huang, T.-C., Chiu, C.-R., Chang, C.-Y., Yang, S.-Y.: Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist. Opt. Express 15(19), 12088–12094 (2007)CrossRefGoogle Scholar
  14. 14.
    Lee, E.S.: Machining characteristics of the electropolishing of stainless steel (STS316L). Int. J. Adv. Manuf. Technol. 16(8), 591–599 (2000). CrossRefGoogle Scholar
  15. 15.
    Park, J.W., Lee, D.W.: Pulse electrochemical polishing for microrecesses based on a coulostatic analysis. Int. J. Adv. Manuf. Technol. 40(7–8), 742–748 (2009). CrossRefGoogle Scholar
  16. 16.
    Boukamp, B.A.: A linear Kronig–Kramers transform test for immittance data validation. J. Electrochem. Soc. 142(6), 1885–1894 (1995). CrossRefGoogle Scholar
  17. 17.
    Sapra, S., Li, H.Q., Wang, Z.C., Suni, I.I.: Voltammetry and impedance studies of Ta in aqueous HF. J. Electrochem. Soc. 152(6), B193–B197 (2005). CrossRefGoogle Scholar
  18. 18.
    Mandula, T.R., Srinivasan, R.: Electrochemical impedance spectroscopic studies on niobium anodic dissolution in HF. J. Solid State Electrochem. 21(11), 3155–3167 (2017). CrossRefGoogle Scholar
  19. 19.
    Franceschetti, D.R., Macdonald, J.R.: Electrode-kinetics, equivalent-circuits, and system characterization—small-signal conditions. J. Electroanal. Chem. 82(1–2), 271–301 (1977). CrossRefGoogle Scholar
  20. 20.
    Connors, K.A.: Chemical Kinetics: The Study of Reaction Rates in Solution. Wiley, New York (1990)Google Scholar
  21. 21.
    Yan, J.: Handbook of Clean Energy Systems. Wiley, New York (2015)CrossRefGoogle Scholar
  22. 22.
    Laio, Y., Wu, L., Peng, W.: A study to improve drilling quality of electrochemical discharge machining (ECDM) process. Procedia CIRP 6, 609–614 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Manglik, R.M.: Additive adsorption and interfacial characteristics of nucleate pool boiling in aqueous surfactant solutions. J. Heat Transf. Trans. ASME 127(7), 684–691 (2005)CrossRefGoogle Scholar
  24. 24.
    Kang, K.H., Kim, H.U., Lim, K.H.: Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride. Colloid Surf. A Physicochem. Eng. Asp. 189(1–3), 113–121 (2001). CrossRefGoogle Scholar
  25. 25.
    Rahman, A., Brown, C.: Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. J. Appl. Polym. Sci. 28(4), 1331–1334 (1983)CrossRefGoogle Scholar
  26. 26.
    Datta, M., Osaka, T., Schultze, J.W.: Microelectronic Packaging. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of BionanotechnologyHanyang University ERICAAnsanRepublic of Korea
  2. 2.Department of Materials Science and Chemical EngineeringHanyang University ERICAAnsanRepublic of Korea
  3. 3.Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations