Electronic Materials Letters

, Volume 15, Issue 1, pp 70–79 | Cite as

Influence of Ag and Pd Contents on the Properties of PANI–Ag–Pd Nanocomposite Thin Films and Its Performance as Electrochemical Sensor for E. coli Detection

  • N. M. Naim
  • H. AbdullahEmail author
  • A. A. Hamid


The use of Ag–Pd bimetallic nanoparticles was reported as an enhanced sensing material in electrochemical sensing application. The composite of bimetallic nanoparticles with conducting polymer has attracted an interest in microbial sensor. Ag–Pd bimetallic nanoparticles embedded in polyaniline (PANI) system was synthesized using sol–gel method and deposited on glass substrate by spin coating technique with various concentrations of Ag and Pd. The films properties were studied using XRD, TEM and AFM to analyze the internal structure and surface morphology. Sensor performance was carried out using current–voltage (IV) measurement and electrochemical impedance spectroscopy (EIS) to monitor the presence of Escherichia coli bacteria in liquid medium. From XRD analysis, the face-centered cubic of Ag–Pd bimetallic crystal were found at lattice (1 1 1) and (2 0 0). The crystallite size and lattice parameter were found to be decrease as concentration of Pd increased. TEM analysis shows the particles of Ag–Pd bimetallic in spherical shape with 10–20 nm in diameter. AFM analysis show the surface roughness of PANI–Ag–Pd thin films decrease as the concentration of Pd increased. From IV and EIS analysis, the prototype sensor of PANI–Ag–Pd nanocomposite thin films performed well with high sensitivity when Pd concentration is increasing.

Graphical Abstract


PANI–Ag–Pd Bimetallic nanoparticles Sol–gel method E. coli sensor IV Impedance 



This project was supported by Exploratory Research Grants Scheme (ERGS/1/2012/STG05/UKM/02/5), Islamic Educational, Scientific and Cultural Organization (ISESCO) (KK-2013-006), and Photonic Technology Laboratory, Department of Electrical, Electronic and System Engineering, University Kebangsaan Malaysia, Bangi, Selangor, Malaysia.


  1. 1.
    Zhang, X.S., Topping, M.E.C., McKendrick, I.J., Savill, N.J., Woolhouse, M.E.J.: Spread of E. coli O157 infection among Scottish cattle farms: stochastic models and model selection. Epidemics. Neth. 2, 11–20 (2010)CrossRefGoogle Scholar
  2. 2.
    Saxena, T., Kaushik, P., Mohan, M.K.: Prevalence of E. coli O157:H7 in water sources: an overview on associated diseases, outbreaks and detection methods. Diagn. Microbiol. Infect. Dis. 82, 249–264 (2015)CrossRefGoogle Scholar
  3. 3.
    Mamani, M., Nobari, N., Alikhani, M.Y., Poorolajal, J.: Antibacterial susceptibility of Escherichia coli among outpatients with community-acquired urinary tract infection in Hamadan. Iran. J. Glob. Antimicrob. Resist. 3, 40–43 (2015)CrossRefGoogle Scholar
  4. 4.
    Fan, N.C., Chen, H.H., Chen, C.L., Ou, L.S., Lin, T.Y., Tsai, M.H., Chiu, C.H.: Rise of community-onset urinary tract infection caused by extended-spectrum β-lactamase-producing Escherichia coli in children. J. Microbiol. Immunol. Infect. 47, 399–405 (2014)CrossRefGoogle Scholar
  5. 5.
    Ghunaim, H., Abu-Madi, M.A., Kariyawasam, S.: Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations. Vet. Microbiol. 172, 13–22 (2014)CrossRefGoogle Scholar
  6. 6.
    Arshak, K., Adley, C., Moore, E., Cunniffe, C., Campion, M., Harris, J.: Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensor. Actuat. B 126, 226–231 (2007)CrossRefGoogle Scholar
  7. 7.
    Arshak, K., Velusamy, V., Korostynska, O., Oliwa-Stasiak, K., Adley, C.: Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sens. J. 9, 1942–1951 (2009)CrossRefGoogle Scholar
  8. 8.
    Ćirić-Marjanovic, G.: Recent advances in polyaniline composites with metals, metalloids and non-metals. Synth. Met. 170, 31–56 (2013)CrossRefGoogle Scholar
  9. 9.
    Murugavelu, M., Karthikeyan, B.: Study of Ag–Pd bimetallic nanoparticles modified glassy carbon electrode for detection of l-cysteine. Superlattices Microstruct. 75, 916–926 (2014)CrossRefGoogle Scholar
  10. 10.
    Li, J., Feng, H., Li, J., Jiang, J., Feng, Y., He, L., Qian, D.: Bimetallic Ag–Pd nanoparticles-decorated grapheme oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination. Electrochim. Acta 176, 827–835 (2015)CrossRefGoogle Scholar
  11. 11.
    Mijowska, E., Onyszko, M., Urbas, K., Aleksandrzak, M., Shi, X., Krysztof, M.P., Podolski, J., El Fray, M.: Palladium nanoparticles deposited on graphene and its electrochemical performance for glucose sensing. Appl. Surf. Sci. 355, 587–592 (2015)CrossRefGoogle Scholar
  12. 12.
    Shang, L., Zhao, F., Zeng, B.: Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine. Electrochim. Acta 168, 330–336 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, M., Feng, Y.: Palladium–silver thin film for hydrogen sensing. Sens. Actuat. B 123, 101–106 (2007)CrossRefGoogle Scholar
  14. 14.
    Trung, D.D., Hoa, N.D., Tong, P.V., Duy, N.V., Dao, T.D., Chung, H.V., Nagao, T., Hieu, N.V.: Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J. Hazard. Mater. 265, 124–132 (2014)CrossRefGoogle Scholar
  15. 15.
    Geng, Z.T., He, Q., Jin, C.G.: Study on deposition technique and properties of Pd/Ag alloy film sensor supported on ceramic substrate. IOP Conference Series: Materials Science and Engineering, vol. 137, p. 012009 (2016)Google Scholar
  16. 16.
    Fernandez, E., Coenen, K., Helmi, A., Melendez, J., Zuniga, J., Pacheco, D.P., Tanaka, D.A.P., van Sint Annaland, M., Gallucci, F.: Preparation and characterization of thin film Pd–Ag supported membranes for high-temperature applications. Int. J. Hydrog. Energy 40, 13463–13478 (2015)CrossRefGoogle Scholar
  17. 17.
    Ali, S.M., Farooq, W.A., Baig, M.R., Shar, M.A., Atif, M., Alghamidi, S.S., Algarawi, M.S., Rehman, N.U., Aziz, M.H.: Structural and optical properties of pure and Ag doped ZnO thin films obtained by sol gel spin coating technique. Mater. Sci. Poland 33, 601–605 (2015)CrossRefGoogle Scholar
  18. 18.
    Chekin, F., Bagheri, S., Abd, S.B.: Hamid, synthesis and spectroscopic characterization of palladium-doped titanium dioxide catalyst. Bull. Mater. Sci. 38, 461–465 (2015)CrossRefGoogle Scholar
  19. 19.
    Abdullah, H., Noor Azmy, N.A., Naim, N.M., Hamid, A.A., Idris, S.: Synthesis and fabrication of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite films by using γ-radiolysis and it’s microbial sensor application. J. Sol Gel Sci. Technol. 74, 15–23 (2015)CrossRefGoogle Scholar
  20. 20.
    Abdullah, H., Zulfakar, M.S., Jalal, W.N.W., Islam, M.T., Shaari, S.: Synthesis and fabrication of (1 − x)ZnAl2O4xSiO2 thin films to be applied as patch antennas. J. Sol Gel Sci. Technol. 69, 183–192 (2014)CrossRefGoogle Scholar
  21. 21.
    Kayani, Z.N., Iqbal, M., Riaz, S., Zia, R., Naseem, S.: Fabrication and properties of zinc oxide thin film prepared by sol–gel dip coating method. Mater. Sci. Poland 33, 515–520 (2015)CrossRefGoogle Scholar
  22. 22.
    Foo, K.L., Kashif, M., Hashim, U., Ali, M.E.: Fabrication and characterization of ZnO thin films by sol–gel spin coating method for the determination of phosphate buffer saline concentration. Curr. Nanosci. 9, 288–292 (2013)CrossRefGoogle Scholar
  23. 23.
    Basu, P.K., Indukuri, D., Keshavan, S., Navratna, V., Vanjari, S.R.K., Raghavan, S., Bhat, N.: Graphene based E. coli sensor on flexible acetate sheet. Sensor. Actuat. B 190, 342–347 (2014)CrossRefGoogle Scholar
  24. 24.
    Chowdhury, A.D., De, A., Chaudhuri, C.R., Bandyopadhyay, K., Sen, P.: Label free polyaniline based impedimetric biosensor for detection of E. coli O157:H7 bacteria. Sensor. Actuat. B 171–172, 916–923 (2012)CrossRefGoogle Scholar
  25. 25.
    Ruan, C., Yang, L., Li, Y.: Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74, 4814–4820 (2002)CrossRefGoogle Scholar
  26. 26.
    Settu, K., Chen, C.J., Liu, J.T., Chen, C.L., Tsai, J.Z.: Impedimetric method for measuring ultra-low E. coli concentration in human urine. Biosens. Bioelectron. 66, 244–250 (2015)CrossRefGoogle Scholar
  27. 27.
    Prakash, S., Chakrabarty, T., Singh, A.K., Shahi, V.K.: Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron. 41, 43–53 (2013)CrossRefGoogle Scholar
  28. 28.
    Adams, C.P., Walker, K.A., Obare, S.O., Docherty, K.M.: Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One 9, e85981 (2014)CrossRefGoogle Scholar
  29. 29.
    Uvarov, V., Popov, I.: Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013)CrossRefGoogle Scholar
  30. 30.
    Abdullah, H., Noor Azmy, N.A., Naim, N.M., Bolhan, A., Hamid, A.A., Shaari, S.: Synthesis and fabrication of PVA–Ag–Cu and PANI–Ag–Cu nanocomposite thin film sensor for detection of E. coli in water. Adv. Mater. Res. 911, 131–135 (2014)CrossRefGoogle Scholar
  31. 31.
    Reda, S.M., Al-Ghannam, S.M.: Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv. Mater. Phys. Chem. 2, 75–81 (2012)CrossRefGoogle Scholar
  32. 32.
    Abdullah, H., Naim, N.M., Bolhan, A., Noor Azmy, N.A., Hamid, A.A.: Morphology, structural and electrical properties of Ag–Cu alloy nanoparticles embedded in PVA matrix and its performance as E. coli monitoring sensor. Arab. J. Sci. Eng. 40, 915–922 (2014)CrossRefGoogle Scholar
  33. 33.
    Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012)CrossRefGoogle Scholar
  34. 34.
    Díaz-Visurraga, J., Gutiérrez, C., Plessing, C., García, A.: Metal nanostructures as antibacterial agents. In: Mendez-Vilas, A. (ed.) Science Against Microbial Pathogens: Communicating Current Research and Technology Advances, pp. 210–218. Formatex, Badajoz (2011)Google Scholar
  35. 35.
    Dixit, V., Tewari, J.C., Sharma, B.S.: Detection of E. coli in water using semi-conducting polymeric thin film sensor. Sensor. Actuat. B 120, 96–103 (2006)CrossRefGoogle Scholar
  36. 36.
    Abdullah, H., Naim, N.M., Noor Azmy, N.A., Hamid, A.A.: PANI–Ag–Cu nanocomposite thin films based impedimetric microbial sensor for detection of E. coli bacteria. J. Nanomater. 2015, Article ID 951640 (2015)Google Scholar
  37. 37.
    Naim, N.M., Abdullah, H., Umar, A.A., Hamid, A.A., Shaari, S.: Thermal annealing effect on structural, morphology and sensor performance of PANI–Ag–Fe based electrochemical E. coli sensor for environmental monitoring. Sci. World. J. 2015, Article ID 696521 (2015)Google Scholar
  38. 38.
    Carrara, S., Bavastrello, V., Ricci, D., Stura, E., Nicolini, C.: Improved nanocomposite materials for biosensor applications investigated by electrochemical impedance spectroscopy. Sens. Actuat. B 109, 221–226 (2005)CrossRefGoogle Scholar
  39. 39.
    Khanna, P.K., Singh, N., Charan, S., Subbarao, V.V.V.S., Gokhale, R., Mulik, U.P.: Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater. Chem. Phys. 93, 117–121 (2005)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.School of Bioscience and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations